【题目】一次数学活动中,检验两条纸带①、②的边线是否平行,小明和小丽采用两种不同的方法:小明对纸带①沿AB折叠,量得∠1=∠2=50°;小丽对纸带②沿GH折叠,发现GD与GC重合,HF与HE重合. 则下列判断正确的是( )
![]()
A. 纸带①的边线平行,纸带②的边线不平行 B. 纸带①、②的边线都平行
C. 纸带①的边线不平行,纸带②的边线平行 D. 纸带①、②的边线都不平行
参考答案:
【答案】C
【解析】
直接利用翻折变换的性质结合平行线的判定方法得出答案.
如图①所示:
![]()
∵∠1=∠2=50°,
∴∠3=∠2=50°,
∴∠4=∠5=180°-50°-50°=80°,
∴∠2≠∠4,
∴纸带①的边线不平行;
如图②所示:∵GD与GC重合,HF与HE重合,
∴∠CGH=∠DGH=90°,∠EHG=∠FHG=90°,
∴∠CGH+∠EHG=180°,
∴纸带②的边线平行.
故选:C.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,在△ABC中,cos∠ABC=
,sin∠ACB=
,AC=2,分别以AB,AC为边向△ABC形外作正方形ABGF和正方形ACDE,连接EF,点M是EF的中点,连接AM,则AM的长为 . 
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,BD是△ABC的角平分线,点E,F分别在BC,AB上,且DE∥AB,BE=AF.

(1)求证:四边形ADEF是平行四边形;
(2)若∠ABC=60°,BD=4,求平行四边形ADEF的面积. -
科目: 来源: 题型:
查看答案和解析>>【题目】为了贯彻落实国家关于增强青少年体质的计划,鄂州市全面实施了义务教育学段中小学学生“饮用奶计划”的营养工程.某牛奶供应商拟提供A(原味)、B(草莓味)、C(核桃味)、D(菠萝味)、E(香橙味)等五种口味的学生奶供学生选择(所有学生奶盒形状、大小相同),为了解对学生奶口味的喜好情况,某初级中学七年级(1)班李老师对全班同学进行了调查统计,制成了如图两幅不完整的统计图.

(1)该班五种口味的学生奶的喜好人数组成一组统计数据,直接写出这组数据的平均数,并将折线统计图补充完整.
(2)在进行调查统计的第二天,李老师为班上每位同学发放一盒学生奶.喜好A味的小聪和喜好B味的小明等四位同学最后领取,剩余的学生奶放在同一纸箱里,分别有A味2盒,B味和C味各1盒,李老师从该纸箱里随机取出两盒学生奶.请你用列表法或画树状图的方法,求出这两盒牛奶恰好同时是小聪和小明喜好的学生奶的概率. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知
,
、
的交点为
,现作如下操作:第一次操作,分别作
和
的平分线,交点为
,第二次操作,分别作
和
的平分线,交点为
,第三次操作,分别作
和
的平分线,交点为
,…
第
次操作,分别作
和
的平分线,交点为
.若
度,那
等于__________度.

-
科目: 来源: 题型:
查看答案和解析>>【题目】阅读下面的推理过程,在括号内填上推理的依据,如图:

∵∠1+∠2=180°,∠2+∠4=180°(已知)
∴∠1=∠4( )
∴c∥a( )
又∵∠2+∠3=180°(已知 )
∠3=∠6( )
∴∠2+∠6=180°( )
∴a∥b( )
∴c∥b( )
-
科目: 来源: 题型:
查看答案和解析>>【题目】在正方形ABCD中,过点A引射线AH,交边CD于点H(点H与点D不重合).通过翻折,使点B落在射线AH上的点G处,折痕AE交BC于E,延长EG交CD于F.
(感知)(1)如图①,当点H与点C重合时,猜想FG与FD的数量关系,并说明理由.
(探究)(2)如图②,当点H为边CD上任意一点时,(1)中结论是否仍然成立?请说明理由.
(应用)(3)在图②中,当DF=3,CE=5时,直接利用探究的结论,求AB的长.

相关试题