【题目】如图,在四边形ABCD中,∠BAD=α,∠BCD=180°﹣α,BD平分∠ABC.
(1)如图,若α=90°,根据教材中一个重要性质直接可得 DA=CD,这个性质是__________.
(2)问题解决:如图,求证AD=CD;
(3)问题拓展:如图,在等腰△ABC中,∠BAC=100°,BD平分∠ABC,求证:BD+AD=BC.
![]()
参考答案:
【答案】(1)角平分线上的点到角的两边距离相等;(2)证明见解析;(3)证明见解析.
【解析】
(1)根据角平分线的性质定理解答;
(2)作 DE⊥BA 交 BA 延长线于 E,DF⊥BC 于 F,证明△DEA≌△DFC,根据全等三角形的性质证明;
(3)在 BC 时截取 BK=BD,连接 DK,根据(2)的结论得到 AD=DK,根据等腰三角形的判定定理得到 KD=KC,结合图形证明.
解:(1)∵BD 平分∠ABC,∠BAD=90°,∠BCD=90°,
∴DA=DC(角平分线上的点到角的两边距离相等),
故答案为:角平分线上的点到角的两边距离相等;
(2)如图 2,作DE⊥BA 交 BA延长线于 E,DF⊥BC 于 F,
∵BD 平分∠EBF,DE⊥BE,DF⊥BF,
∴DE=DF,
∵∠BAD+∠C=180°,∠BAD+∠EAD=180°,
∴∠EAD=∠C,
在△DEA 和△DFC 中,
∴△DEA≌△DFC(AAS),
∴DA=DC;
![]()
(3)如图,在 BC 时截取 BK=BD,连接 DK,
∵AB=AC,∠A=100°,
∴∠ABC=∠C=40°,
∵BD 平分∠ABC,
∴∠DBK=
∠ABC=20°,
∵BD=BK,
∴∠BKD=∠BDK=80°,即∠A+∠BKD=80°, 由(2)的结论得 AD=DK,
∵∠BKD=∠C+∠KDC,
∴∠KDC=∠C=40°,
∴DK=CK,
∴AD=DK=CK,
∴BD+AD=BK+CK=BC.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,OP为∠AOB的平分线,PC⊥OA,PD⊥OB,垂足分别是C,D,E为OP上一点,则下列结论错误的是( )

A. CE=DEB. ∠CPO=∠DEPC. ∠CEO=∠DEOD. OC=OD
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC中,AC=BC,∠ACB=90°,点 D,E分别在AB,BC上,且AD=BE,BD=AC,过E作EF⊥AB于F.
(1)求证:∠FED=∠CED;
(2)若 BF=
,直接写出 CE的长为_______.
-
科目: 来源: 题型:
查看答案和解析>>【题目】直线y=
x与双曲线y=
的交点A的横坐标为2
(1)求k的值
(2)如图,过点P(m,3)(m>0)作x轴的垂线交双曲线y=
(x>0)于点M,交直线OA于点N 
①连接OM,当OA=OM时,直接写出PN﹣PM的值
②试比较PM与PN的大小,并证明你的结论. -
科目: 来源: 题型:
查看答案和解析>>【题目】两组邻边分别相等的四边形我们称它为筝形.如图,在四边形ABCD中,AB=AD,BC=DC,AC与BD相交于点O,下列判断正确的有_____(填序号).
①AC⊥BD;②AC,BD互相平分;③AC平分∠BCD;④∠ABC=∠ADC=90°;⑤筝形ABCD的面积为
AC·BD.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,若∠A=15°,AB=BC=CD=DE=EF,则∠DEF等于__________.

-
科目: 来源: 题型:
查看答案和解析>>【题目】阅读下列材料,然后解决问题:和、差、倍、分等问题中有着广泛的应用,截长法与补短法在证明线段的和、差、倍、分等问题中有着广泛的应用.具体的做法是在某条线段上截取一条线段等于某特定线段,或将某条线段延长,使之与某特定线段相等,再利用全等三角形的性质等有关知识来解决数学问题.
(1)如图1,在△ABC中,若 AB=12,AC=8,求 BC边上的中线AD的取值范围.
解决此问题可以用如下方法:延长AD到点E使 DE=AD,再连接 BE,把AB、AC、2AD集中在△ABE中.利用三角形三边的关系即可判断中线 AD的取值范围是_______.
问题解决:
(2)如图2,在四边形ABCD中,AB=AD,∠ABC+∠ADC=180°,E、F分别是边BC,CD上的两点,且∠EAF=
∠BAD,求证:BE+DF=EF.问题拓展:
(3)如图3,在△ABC中,∠ACB=90°,∠CAB=60°,点D是△ABC 外角平分线上一点,DE⊥AC交 CA延长线于点E,F是 AC上一点,且DF=DB.
求证:AC﹣AE=
AF.
相关试题