【题目】如图,在平面直角坐标系xOy中,矩形AOCD的顶点A的坐标是(0,4),现有两动点P,Q,点P从点O出发沿线段OC(不包括端点O,C)以每秒2个单位长度的速度匀速向点C运动,点Q从点C出发沿线段CD(不包括端点C,D)以每秒1个单位长度的速度匀速向点D运动.点P,Q同时出发,同时停止,设运动时间为t(秒),当t=2(秒)时,PQ=2
. ![]()
(1)求点D的坐标,并直接写出t的取值范围.
(2)连接AQ并延长交x轴于点E,把AE沿AD翻折交CD延长线于点F,连接EF,则△AEF的面积S是否随t的变化而变化?若变化,求出S与t的函数关系式;若不变化,求出S的值.
(3)在(2)的条件下,t为何值时,四边形APQF是梯形?
参考答案:
【答案】
(1)解:由题意可知,当t=2(秒)时,OP=4,CQ=2,
在Rt△PCQ中,由勾股定理得:PC=
=4,
∴OC=OP+PC=4+4=8,
又∵矩形AOCD,A(0,4),∴D(8,4).
点P到达终点所需时间为
=4秒,点Q到达终点所需时间为
=4秒,由题意可知,t的取值范围为:0<t<4.
(2)解:结论:△AEF的面积S不变化.
∵AOCD是矩形,∴AD∥OE,∴△AQD∽△EQC,
∴
,即
,解得CE=
.
由翻折变换的性质可知:DF=DQ=4﹣t,则CF=CD+DF=8﹣t.
S=S梯形AOCF+S△FCE﹣S△AOE
=
(OA+CF)OC+
CFCE﹣
OAOE
=
[4+(8﹣t)]×8+
(8﹣t)
﹣
×4×(8+
)
化简得:S=32为定值.
所以△AEF的面积S不变化,S=32.
(3)解:若四边形APQF是梯形,因为AP与CF不平行,所以只有PQ∥AF.
由PQ∥AF可得:△CPQ∽△DAF,
∴
,即
,化简得t2﹣12t+16=0,
解得:t1=6+2
,t2=6﹣2
,
由(1)可知,0<t<4,∴t1=6+2
不符合题意,舍去.
∴当t=(6﹣2
)秒时,四边形APQF是梯形.
【解析】(1)利用勾股定理求出PC的长度,然后利用矩形的性质确定D点的坐标;自变量的取值范围由动点到达终点的时间来确定;(2)本问关键是利用相似三角形与翻折变换的性质,求出S的表达式.注意求图形面积的方法S=S梯形AOCF+S△FCE﹣S△AOE . 经化简计算后,S=32为定值,所以S不变;(3)由四边形APQF是梯形,可得PQ∥AF,从而得到相似三角形△CPQ∽△DAF;再由线段比例关系求出时间t.
【考点精析】关于本题考查的梯形的定义和翻折变换(折叠问题),需要了解一组对边平行,另一组对边不平行的四边形是梯形.两腰相等的梯形是等腰梯形;折叠是一种对称变换,它属于轴对称,对称轴是对应点的连线的垂直平分线,折叠前后图形的形状和大小不变,位置变化,对应边和角相等才能得出正确答案.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某中学七年级一班在一次活动中要分为四个组,其中第一组有x人,第二组比第一组的
少5人,第三组比一、二组的和少15人,第四组与第一组2倍的和是34.(1)用含x的代数式表示第二、三、四组的人数,把答案填在下表相应的位置:
第一组
第二组
第三组
第四组
x人
x=12
(2)求x=12时第二、三、四组的人数,把答案填在上表相应的位置;
(3)求七年级一班的总人数(用含x的代数式表示),并求x=10时,该班的总人数;
(4)x能否等于13,为什么?x能否等于6,为什么?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系xOy中,梯形AOBC的边OB在x轴的正半轴上,AC∥OB,BC⊥OB,过点A的双曲线y=
的一支在第一象限交梯形对角线OC于点D,交边BC于点E.
(1)填空:双曲线的另一支在第象限,k的取值范围是;
(2)若点C的坐标为(2,2),当点E在什么位置时,阴影部分的面积S最小?
(3)若
=
,S△OAC=2,求双曲线的解析式. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知∠BAC的平分线与BC的垂直平分线相交于点D,DE⊥AB,DF⊥AC,垂足分别为E,F,AB=6,AC=3,则BE=( )

A. 6 B. 3 C. 2 D. 1.5
-
科目: 来源: 题型:
查看答案和解析>>【题目】为提倡全民健身活动, 某社区准备购买羽毛球和羽毛球拍供社区居民使用, 某体育用品商店羽毛球每盒 10 元, 羽毛球拍每副 40 元 .该商店有两种优惠方案,方案一: 不购买会员卡时, 羽毛球享受 8.5 折优惠, 羽毛球拍购买 5 副(含5 副) 以上才能享受 8.5 折优惠, 5 副以下必须按定价购买;方案二: 每张会员卡 20 元, 办理会员卡时, 全部商品享受 8 折优惠 . 设该社区准备购买羽毛球拍 6 副, 羽毛球
盒, 请回答下列问题:(1)如果一位体育爱好者按方案一只购买了 4 副羽毛球拍,求他购买时所需要的费用;
(2)用含
的代数式分别表示该社区按方案一和方案二购买所需要的钱数;(3)①直接写出一个
的值, 使方案一比方案二优惠;②直接写出一个
的值, 使方案二比方案一优惠 . -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知∠1=∠2,AC=AD,请增加一个条件,使△ABC≌△AED,你添加的条件是______.

-
科目: 来源: 题型:
查看答案和解析>>【题目】阅读材料:
如图①,若点B把线段分成两条长度相等的线段AB和BC,则点B叫做线段AC的中点.

回答问题:
(1)如图②,在数轴上,点A所表示的数是﹣2,点B所表示的数是0,点C所表示的数是3.
①若A是线段DB的中点,则点D表示的数是 ;
②若E是线段AC的中点,求点E表示的数.
(2)在数轴上,若点M表示的数是m,点N所表示的数是n,点P是线段MN的中点.
①若点P表示的数是1,则m、n可能的值是 (填写符合要求的序号);
(i)m=0,n=2;(ii)m=﹣5,n=7;(iii)m=0.5,n=1.5;(iv)m=﹣1,n=2
②直接用含m、n的代数式表示点P表示的数.
相关试题