【题目】已知菱形OABC在平面直角坐标系的位置如图所示,顶点A(5,0),OB=4
,点P是对角线OB上的一个动点,D(0,1),当CP+DP最短时,点P的坐标为( )
![]()
A. (0,0)B. (1,
)C. (
,
)D. (
,
)
参考答案:
【答案】D
【解析】
如图连接AC,AD,分别交OB于G、P,作BK⊥OA于K.首先说明点P就是所求的点,再求出点B坐标,求出直线OB、DA,列方程组即可解决问题.
如图连接AC,AD,分别交OB于G、P,作BK⊥OA于K.![]()
∵四边形OABC是菱形,
∴AC⊥OB,GC=AG,OG=BG=2
,A、C关于直线OB对称,
∴PC+PD=PA+PD=DA,
∴此时PC+PD最短,
在RT△AOG中,AG=
,
,
,
,
∴点B坐标(8,4),
∴直线OB解析式为y=
x,直线AD解析式为y=-
x+1,
,解得:
,
即点P的坐标为(
,
).
故选:D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知四边形ABCD,AB∥CD,点E是BC延长线上一点,连接AC、AE,AE交CD于点F,∠1=∠2,∠3=∠4.
证明:
(1)∠BAE=∠DAC;
(2)∠3=∠BAE;
(3)AD∥BE.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,在平面直角坐标系中,点A,B的坐标分别是(-2,0),(4,0),现同时将点A、B分别向上平移2个单位长度,再向右平移2个单位长度,得到A,B的对应点C,D.连接AC、BD、CD.

(1)点C的坐标为 ,点D的坐标为 ,四边形ABDC的面积为 .
(2)在x轴上是否存在一点E,使得△DEC的面积是△DEB面积的2倍?若存在,请求出点E的坐标;若不存在,请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】甲、乙两人进行羽毛球比赛,羽毛球飞行的路线为抛物线的一部分,如图,甲在O点正上方1m的P处发出一球,羽毛球飞行的高度y(m)与水平距离x(m)之间满足函数表达式y=a(x﹣4)2+h,已知点O与球网的水平距离为5m,球网的高度为1.55m.

(1)当a=﹣
时,①求h的值;②通过计算判断此球能否过网.(2)若甲发球过网后,羽毛球飞行到与点O的水平距离为7m,离地面的高度为
m的Q处时,乙扣球成功,求a的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】一束光线从点A(3,3)出发,经过y轴上点C反射后经过点B(1,0),则光线从A点到B点经过的路线长是( )
A. 4B. 5C. 6D. 7
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在Rt△ABC中,∠C=90°,将△ABC绕点C顺时针旋转90°得到△A′B′C,M、M′分别是AB、A′B′的中点,若AC=8,BC=6,则线段MM′的长为____.

-
科目: 来源: 题型:
查看答案和解析>>【题目】小龙在学校组织的社会调查活动中负责了解他所居住的小区450户居民的家庭收入情况.他从中随机调查了40户居民家庭收入情况(收入取整数,单位:元),并绘制了如下的频数分布表和频数分布直方图.
根据以上提供的信息,解答下列问题:
(1)补全频数分布表.
(2)补全频数分布直方图.
(3)绘制相应的频数分布折线图.
(4)请你估计该居民小区家庭属于中等收入(大于1000不足1600元)的大约有多少户?

相关试题