【题目】如图①,O为直线AB上一点,过点O作射线OC,使∠BOC=110°.将一三角尺的直角顶点放在点O处(∠OMN=30°),一边OM在射线OB上,另一边ON在直线AB的下方.
(1)将图①中的三角尺绕点O逆时针旋转至图②,使一边OM在∠BOC的内部,且恰好平分∠BOC,求∠BON的度数;
(2)将图①中的三角尺绕点O以每秒5°的速度按逆时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,则t的值为________(直接写出结果);
(3)将图①中的三角尺绕点O顺时针旋转至图③,使ON在∠AOC的内部,请探究∠AOM与∠NOC的数量关系,并说明理由.
![]()
参考答案:
【答案】(1) 35°;(2) 11或47;(3)见解析.
【解析】
(1)根据角平分线的定义以及直角的定义,即可求得∠BON的度数;
(2)分两种情况:ON的反向延长线平分∠AOC或射线ON平分∠AOC,分别根据角平分线的定义以及角的和差关系进行计算即可;
(3)根据∠MON=90°,∠AOC=70°,分别求得∠AOM=90°-∠AON,∠NOC=70°-∠AON,再根据∠AOM-∠NOC=(90°-∠AON)-(70°-∠AON)进行计算,即可得出∠AOM与∠NOC的数量关系.
(1)如图2,
![]()
∵OM平分∠BOC,
∴∠MOC=∠MOB,
又∵∠BOC=110°,
∴∠MOB=55°,
∵∠MON=90°,
∴∠BON=∠MON-∠MOB=35°;
(2)分两种情况:
①如图2,∵∠BOC=110°
∴∠AOC=70°,
当直线ON恰好平分锐角∠AOC时,∠AOD=∠COD=35°,
∴∠BON=35°,∠BOM=55°,
即逆时针旋转的角度为55°,
由题意得,5t=55°
解得t=11(s);
②如图3,当NO平分∠AOC时,∠NOA=35°,
∴∠AOM=55°,
即逆时针旋转的角度为:180°+55°=235°,
由题意得,5t=235°,
解得t=47(s),
综上所述,t=11s或47s时,直线ON恰好平分锐角∠AOC;
故答案为:11或47;
(3)∠AOM-∠NOC=20°.
理由:∵∠MON=90°,∠AOC=70°,
∴∠AOM=90°-∠AON,∠NOC=70°-∠AON,
∴∠AOM-∠NOC=(90°-∠AON)-(70°-∠AON)=20°,
∴∠AOM与∠NOC的数量关系为:∠AOM-∠NOC=20°.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线AB,CD交于点O,且∠BOC=80°,OE平分∠BOC,OF为OE的反向延长线.
(1)求∠2和∠3的度数;
(2)OF平分∠AOD吗?为什么?

-
科目: 来源: 题型:
查看答案和解析>>【题目】
在平面直角坐标系
中的位置如图所示.(1)作
关于点
成中心对称的
.(2)将
向右平移4个单位,作出平移后的
.(3)在
轴上求作一点
,使
的值最小 
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线AB,CD相交于点O,OE⊥AB,垂足为O,OF平分∠AOE,∠1=15°,则下列结论中不正确的是( )

A. ∠2=45° B. ∠1=∠3 C. ∠EOD与∠3互为余角 D. ∠FOD=110°
-
科目: 来源: 题型:
查看答案和解析>>【题目】为响应市政府“创建国家森林城市”的号召,某小区计划购进A、B两种树苗
已知2棵A种树苗和3棵B种树苗共需270元,3棵A种树苗和6棵B种树苗共需480元.
、B两种树苗的单价分别是多少元?
该小区计划购进两种树苗共28棵,总费用不超过1550元,问最多可以购进A种树苗多少棵. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在正方形ABCD中,E是边AB的中点,F是边BC的中点,连结CE、DF.求证:CE=DF.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图
,直线
,垂足为O,直线PQ经过点O,且
点B在直线l上,位于点O下方,
点C在直线PQ上运动
连接BC过点C作
,交直线MN于点A,连接
点A、C与点O都不重合
. 
小明经过画图、度量发现:在
中,始终有一个角与
相等,这个角是________________;
当
时,在图
中画出示意图并证明
;
探索
和
之间的数量关系,并说明理由.
相关试题