【题目】某一出租车一天下午以鼓楼为出发点在东西方向运营,向东走为正,向西走为负,行车里程(单位:km)依先后次序记录如下:
.
(1)将最后一名乘客送到目的地,出租车离鼓楼出发点多远?在鼓楼的什么方向?
(2)若每千米的价格为2.4元,司机一个下午的营业额是多少?
参考答案:
【答案】(1)出租车离鼓楼出发点0米,在出发点鼓楼;(2)司机一个下午的营业额是139.2元.
【解析】
(1)将行驶记录相加,根据正负数的意义解答;
(2)将每次记录的绝对值相加,得到的值乘以2.4,即可解答.
解:(1)935+48+6364+10=0(米),
∴将最后一名乘客送到目的地,出租车离鼓楼出发点0米,在出发点鼓楼;
(2)|+9|+|3|+|5|+|+4|+|8|+|+6|+|3|+|6|+|4|+|+10|=58(千米),
58×2.4=139.2(元),
答:司机一个下午的营业额是139.2元.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某批发商计划将一批海产品由A地运往B地.汽车货运公司和铁路货运公司均开办海产品运输业务.已知运输路程为120千米,汽车和火车的速度分别为60千米/时、100千米/时.两货运公司的收费项目及收费标准如下表所示:
运输工具
运输费单价/
(元/吨·千米)
冷藏费单价/
(元/吨·小时)
过路费/元
装卸及管理费/元
汽 车
2
5
200
0
火 车
1.8
5
0
1600
注:“元/吨·千米”表示每吨货物每千米的运费;“元/吨·小时”表示每吨货物每小时的冷藏费.
(1)设该批发商待运的海产品有x(吨),汽车货运公司和铁路货运公司所要收取的费用分别为y1(元)和y2(元),试求y1、y2与x之间的函数关系式.
(2)若该批发商待运的海产品不少于30吨,为节省运费,他应选择哪个货运公司承担运输业务?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线OC、BC的函数关系式分别是y1=x和y2=﹣2x+6,直线BC与x轴交于点B,直线BA与直线OC相交于点A.
(1)当x取何值时y1>y2?
(2)当直线BA平分△BOC的面积时,求点A的坐标.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点D是△ABC边BC上一点,AD=BD,且AD平分∠BAC.(1)若∠B=50°,求∠ADC的度数;(2)若∠C=30°,求∠ADC的度数.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知∠DAE=∠B,∠DAB=∠C,则下列结论不成立的是( )

A.AD∥BCB.AB∥CDC.∠DAB+∠B=180°D.∠B=∠C
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知△ABC中,AB=AC,∠BAC=90°,分别过B,C向经过点A的直线EF作垂线,垂足为E,F.

(1)如图1,当EF与斜边BC不相交时,请证明EF=BE+CF;
(2)如图2,当EF与斜边BC相交时,其他条件不变,写出EF、BE、CF之间的数量关系,并说明理由;
(3)如图3,猜想EF、BE、CF之间又存在怎样的数量关系,写出猜想,不必说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线y=﹣
x+1与x轴交于点A,与y轴交于点B,抛物线y=﹣x2+bx+c经过A,B两点.
(1)求抛物线的解析式;
(2)点P是第一象限抛物线上的一点,连接PA、PB、PO,若△POA的面积是△POB面积的
倍.
①求点P的坐标;
②点Q为抛物线对称轴上一点,请直接写出QP+QA的最小值;
(3)点M为直线AB上的动点,点N为抛物线上的动点,当以点O、B、M、N为顶点的四边形是平行四边形时,请直接写出点M的坐标.
相关试题