【题目】随着粤港澳大湾区建设的加速推进,广东省正加速布局以
等为代表的战略性新兴产业.据统计,目前广东
基站的数量约
万座,计划到2020年底,全省
基站数量是目前的
倍,到2022年底,全省
基站数量将达到
万座.
计划到2020年底,全省
基站的数量是多少万座?
按照计划,求2020年底到2022年底,全省
基站数量的年平均增长率;
求2021年底全省
基站的数量.
参考答案:
【答案】(1)6;(2)70%;(3)
万.
【解析】
(1)利用“现在的数量×4”即可解答;
(2)设年平均增长率为
,根据2020年底到2022年底的数量列出方程即可解答;
(3)根据年平均增长率以及2020年底的数量即可解答.
解:(1)
(万座).
答:计划到2020年底,全省
基站的数量是
万座.
(2)设2020年底到2022年底,全省
基站数量的年平均增长率为
,
依题意,得
,
解得
(舍去).
答:2020年底到2022年底,全省
基站数量的年平均增长率为
.
(3)
(万座).
答:2021年底全省
基站的数量为
万座.
-
科目: 来源: 题型:
查看答案和解析>>【题目】(类比探究)如图1,线段AD,CB相交于点O,连接AB,DC,我们把形如图1的图形称之为“X型”.如图2,在图1的条件下,∠DAB和∠BCD的平分线AE和CE相交于点E,并且与CB,AD分别相交于F,G,试解答下列问题:
(1)在图1中,请直接写出∠A,∠B,∠C,∠D之间的数量关系:____________;
(2)在图2中,共有______个“X型”;
(3)在图2中,若∠D=40°,∠B=30°,则∠AEC=_______;
(4)在图2中,若∠D=α,∠B=β,则∠AEC=__________.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,将矩形ABCD折叠,使点C与A点重合,折痕为EF.

(1)判断四边形AFCE的形状,并说明理由.
(2)若AB=4,BC=8,求折痕EF的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】在甲村至乙村的公路上有一块山地正在开发,现有一
处需要爆破.已知点
与公路上的停靠站
的距离为300米,与公路上的另一停靠站
的距离为400米,且
,如图所示为了安全起见,爆破点
周围半径250米范围内不得进入,问在进行爆破时,公路
段是否因为有危险而需要暂时封锁?请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】我市在党中央实施“精准扶贫”政策的号召下,大力开展科技扶贫的惠农富农,老张在科技人员的指导下,改良柑橘品种,去年他家的柑橘喜获丰收,而且质优味美,客商闻讯前来采购,经协商:采购价y(元/吨)与采购量x(吨)之间的函数关系如图所示.

(1)求y与x之间的函数关系式;
(2)老张种植柑橘的成本是800元/吨,当客商采购量是多少时,老张在这次销售柑橘时获利最大?最大利润是多少? -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,A,B,C,D为矩形的四个顶点,AB=16 cm,BC=6 cm,动点P,Q分别从点A,C同时出发,点P以3 cm/s的速度向点B移动,点Q以2 cm/s的速度向点D移动.当点P运动到点B停止时,点Q也随之停止运动.问几秒时点P和点Q的距离是10 cm?

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AD是△ABC的角平分线,以AD为弦的⊙O交AB,AC于E,F,已知EF∥BC.

(1)求证:BC是⊙O的切线;
(2)若已知AE=9,CF=4,求DE长;
(3)在(2)的条件下,若∠BAC=60°,求tan∠AFE的值及GD长.
相关试题