【题目】2020年8月高邮高铁将通车,高邮至北京的路程约为900km,甲、乙两人从高邮出发,分别乘坐汽车A与高铁B前往北京.已知A车的平均速度比B车的平均速度慢150km/h,A车的行驶时间是B车的行驶时间的2.5倍,两车的行驶时间分别为多少?
参考答案:
【答案】A车行驶的时间为9小时,B车行驶的时间为3.6小时.
【解析】
设B车行驶的时间为t小时,则A车行驶的时间为2.5t小时,根据平均速度=路程÷时间结合A车的平均速度比B车的平均速度慢150km/h,即可得出关于t的分式方程,解之经检验后即可得出结论.
解:设B车行驶的时间为t小时,则A车行驶的时间为2.5t小时,
根据题意得:
,
解得:t=3.6,
经检验,t=3.6是原分式方程的解,且符合题意,
∴2.5t=9.
答:A车行驶的时间为9小时,B车行驶的时间为3.6小时.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,∠C=90°,AD平分∠BAC,

(1)求作⊙O,圆心O是AD的中垂线与AB的交点,OD为半径.(尺规作图,不写作法,保留痕迹)
(2)求证:BC是⊙O切线.
(3)若BD=5,DC=3,求AC的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】某校为学生开展拓展性课程,拟在一块长比宽多6米的长方形场地内建造由两个大棚组成的植物养殖区(如图1),要求两个大棚之间有间隔4米的路,设计方案如图2,已知每个大棚的周长为44米.
(1)求每个大棚的长和宽各是多少?
(2)现有两种大棚造价的方案,方案一是每平方米60元,超过100平方米优惠500元,方案二是每平方米70元,超过100平方米优惠总价的20%,试问选择哪种方案更优惠?

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线y=
x+4与x轴相交于点A,与y轴相交于点B.(1)求△AOB的面积;
(2)过B点作直线BC与x轴相交于点C,若△ABC的面积是16,求点C的坐标.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,在平面直角坐标系中,△OAB是等边三角形,点B的坐标为(4,0),点C(a,0)是x轴上一动点,其中a≠0,将△AOC绕点A逆时针方向旋转60°得到△ABD,连接CD.
(1)求证;△ACD是等边三角形;
(2)如图2,当0<a<4时,△BCD周长是否存在最小值?若存在,求出a的值;若不存在,请说明理由.
(3)如图3,当点C在x轴上运动时,是否存在以B、C、D为顶点的三角形是直角三角形?若存在,求出a的值;若不存在,请说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:以O为圆心的扇形AOB中,∠AOB=90°,点C为
上一动点,射线AC交射线OB于点D,过点D作OD的垂线交射线OC于点E,联结AE.
(1)如图1,当四边形AODE为矩形时,求∠ADO的度数;
(2)当扇形的半径长为5,且AC=6时,求线段DE的长;
(3)联结BC,试问:在点C运动的过程中,∠BCD的大小是否确定?若是,请求出它的度数;若不是,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】现有一项工程,甲单独做需要10天能完成,乙单独做需要15天能完成,甲做一天需要的报酬比乙做一天需要的报酬多100元,甲、乙合作完成此项工程需要5400元报酬.
(1)问甲、乙合作多少天能完成此项工程?
(2)求甲做一天需要的报酬;
(3)为了节省开支,应在甲单独完成、乙单独完成、甲乙合作完成这三种方案中选择哪种方案?请通过计算说明.
相关试题