【题目】点P是∠AOB的内部任意一点,PM⊥OA,PN⊥OB,垂足分别是M、N,D是OP的中点
(1)求证:DM=DN
(2)连接MN,当∠MPN=______时,△DMN是等边三角形;
(3)探索∠MPN与∠MDN的数量关系,并说明理由。
参考答案:
【答案】(1)见解析;(2)150°;(3)∠MPN=180°-
∠MDN,证明见解析.
【解析】
(1)根据直角三角形斜边上的中线等于斜边的一半得到MD=OD,ND=OD,于是可证得;
(2)当∠MPN=150°时,由(1)先证明∠MDP=2∠MOD,∠NDP=2∠NOD,进而得到∠MDN=2∠MON=60°即可说明此时△DMN是等边三角形.
(3)由(2)可知∠MDN=2∠MON,∠MPN+∠MON =180°,于是可得∠MPN=180°-
∠MDN.
如图:
![]()
(1)∵PM⊥OA,D是OP的中点,
∴MD=OD,
∵PN⊥OB,D是OP的中点,
∴ND=OD
∴ MD=ND
(2)当∠MPN=150°时,△DMN是等边三角形.理由如下:
∵∠MPN=150°,PM⊥OA,PN⊥OB,
∴∠MON=30°,
由(1)可知MD=OD,ND=OD,
∴∠MDP=2∠MOD,∠NDP=2∠NOD
∴∠MDN=2∠MON=60°,
∵MD=ND.
∴△DMN是等边三角形.
(3) 由(2)可知∠MDN=2∠MON,∠MPN+∠MON =180°
∴∠MPN=180°-∠MON=180°-
∠MDN
∴∠MPN=180°-
∠MDN.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC中,CE平分∠ACB,CF平分∠ACD,且EF∥BC交AC于M,若CM=5,求
+
的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】近年来,共享单车服务的推出(如图1),极大的方便了城市公民绿色出行,图2是某品牌某型号单车的车架新投放时的示意图(车轮半径约为30cm),其中BC∥直线l,∠BCE=71°,CE=54cm.
(1)求单车车座E到地面的高度;(结果精确到1cm)
(2)根据经验,当车座E到CB的距离调整至等于人体胯高(腿长)的0.85时,坐骑比较舒适.小明的胯高为70cm,现将车座E调整至座椅舒适高度位置E′,求EE′的长.(结果精确到0.1cm)
(参考数据:sin71°≈0.95,cos71°≈0.33,tan71°≈2.90)

-
科目: 来源: 题型:
查看答案和解析>>【题目】长方形ABCD中,AB=6,AD=8,点E为边AD上一点,将△ABE沿BE折叠后得到△BEF.

(1)如图1,若点E为AD的中点,延长BF交边CD于点G.
①求证:DG=FG.
②求FG的长度.
(2)如图2,若点E为边AD的一动点,连接FD,△DEF能否为直角三角形?若能,求出AE的值.若不能,请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系中,点P是第一象限角平分线上的一点,OP=
,直角三角板的直角顶点与点P重合,把直角三角板绕点P转动,另两条直角边所在直线与x轴正半轴、y轴正半轴分别交于A、B两点
(1)求点P的坐标
(2)若点A的坐标为(0,m),点B的坐标为(n,0),试判断m、n有什么数量关系,并说明理由
(3)连接AB,△ABO的面积是否存在最大值,若存在,求出最大值,若不存在,请说明理由
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.
(1)观察猜想
图1中,线段PM与PN的数量关系是 ,位置关系是 ;
(2)探究证明
把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;
(3)拓展延伸
把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.

相关试题