【题目】近年来,共享单车服务的推出(如图1),极大的方便了城市公民绿色出行,图2是某品牌某型号单车的车架新投放时的示意图(车轮半径约为30cm),其中BC∥直线l,∠BCE=71°,CE=54cm.
(1)求单车车座E到地面的高度;(结果精确到1cm)
(2)根据经验,当车座E到CB的距离调整至等于人体胯高(腿长)的0.85时,坐骑比较舒适.小明的胯高为70cm,现将车座E调整至座椅舒适高度位置E′,求EE′的长.(结果精确到0.1cm)
(参考数据:sin71°≈0.95,cos71°≈0.33,tan71°≈2.90)
![]()
参考答案:
【答案】(1)81cm;(2)8.6cm;
【解析】
(1)作EM⊥BC于点M,由EM=ECsin∠BCE可得答案;
(2)作E′H⊥BC于点H,先根据E′C=
求得E′C的长度,再根据EE′=CE′﹣CE可得答案.
(1)如图1,过点E作EM⊥BC于点M.
由题意知∠BCE=71°、EC=54,∴EM=ECsin∠BCE=54sin71°≈51.3,则单车车座E到地面的高度为51.3+30≈81cm;
(2)如图2所示,过点E′作E′H⊥BC于点H.
由题意知E′H=70×0.85=59.5,则E′C=
=
≈62.6,∴EE′=CE′﹣CE=62.6﹣54=8.6(cm).
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系
中,正方形ABCO的对角线BO在x 轴上,若正方形ABCO的边长为
,点B在x负半轴上,反比例函数
的图象经过C点.(1)求该反比例函数的解析式;
(2)当函数值
>-2时,请直接写出自变量x的取值范围;(3)若点P是反比例函数上的一点,且△PBO的面积恰好等于正方形ABCO的面积,求点P的坐标.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC中,CE平分∠ACB,CF平分∠ACD,且EF∥BC交AC于M,若CM=5,求
+
的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】点P是∠AOB的内部任意一点,PM⊥OA,PN⊥OB,垂足分别是M、N,D是OP的中点
(1)求证:DM=DN
(2)连接MN,当∠MPN=______时,△DMN是等边三角形;
(3)探索∠MPN与∠MDN的数量关系,并说明理由。
-
科目: 来源: 题型:
查看答案和解析>>【题目】长方形ABCD中,AB=6,AD=8,点E为边AD上一点,将△ABE沿BE折叠后得到△BEF.

(1)如图1,若点E为AD的中点,延长BF交边CD于点G.
①求证:DG=FG.
②求FG的长度.
(2)如图2,若点E为边AD的一动点,连接FD,△DEF能否为直角三角形?若能,求出AE的值.若不能,请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系中,点P是第一象限角平分线上的一点,OP=
,直角三角板的直角顶点与点P重合,把直角三角板绕点P转动,另两条直角边所在直线与x轴正半轴、y轴正半轴分别交于A、B两点
(1)求点P的坐标
(2)若点A的坐标为(0,m),点B的坐标为(n,0),试判断m、n有什么数量关系,并说明理由
(3)连接AB,△ABO的面积是否存在最大值,若存在,求出最大值,若不存在,请说明理由
相关试题