【题目】如图所示,宽为20米,长为32米的长方形地面上,修筑宽度为x米的两条互相垂直的小路,余下的部分作为耕地,如果要在耕地上铺上草皮,选用草皮的价格是每平米a元,
(1)求买草皮至少需要多少元?(用含a,x的式子表示)
(2)计算a=40,x=2时,草皮的费用.
![]()
参考答案:
【答案】(1)(640-52x+ x2)a;(2)21600元.
【解析】
(1)先求出小路的面积,再用总面积减去小路面积,得到耕地面积,再乘以草皮的价格即可得出答案;
(2)把a=40,x=2代入(1)中的代数式,即可求出草皮的费用.
解:(1)依题意,得
32x+(20-x)x=32x+20x-x2=52x-x2(平方米),32×20-(52x-x2)=640-52x+ x2
所以买草皮至少需要(640-52x+ x2)a元;
(2)当a=40,x=2时,
(640-52x+ x2)a =(640-52×2+22)×40=21600(元).
所以当a=40,x=2时,草皮的费用是21600元.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,直线AD对应的函数关系式为y=﹣2x﹣2,与抛物线交于点A(在x轴上),点D.抛物线与x轴另一交点为B(3,0),抛物线与y轴交点C(0,﹣6).
(1)求抛物线的解析式;
(2)如图2,连结CD,过点D作x轴的垂线,垂足为点E,直线AD与y轴交点为F,若点P由点D出发以每秒1个单位的速度沿DE边向点E移动,1秒后点Q也由点D出发以每秒3个单位的速度沿DC,CO,OE边向点E移动,当其中一个点到达终点时另一个点也停止移动,点P的移动时间为t秒,当PQ⊥DF时,求t的值;(图3为备用图)
(3)如果点M是直线BC上的动点,是否存在一个点M,使△ABM中有一个角为45°?如果存在,直接写出所有满足条件的M点坐标;如果不存在,请说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】三辆汽车经过某收费站下高速时,在2个收费通道A,B中,可随机选择其中的一个通过.
(1)三辆汽车经过此收费站时,都选择A通道通过的概率是 ;
(2)求三辆汽车经过此收费站时,至少有两辆汽车选择B通道通过的概率.
-
科目: 来源: 题型:
查看答案和解析>>【题目】问题提出
(1)如图1,点A为线段BC外一动点,且BC=a,AB=b,填空:当点A位于 时,线段AC的长取得最大值,且最大值为 (用含a,b的式子表示).
问题探究
(2)点A为线段BC外一动点,且BC=6,AB=3,如图2所示,分别以AB,AC为边,作等边三角形ABD和等边三角形ACE,连接CD,BE,找出图中与BE相等的线段,请说明理由,并直接写出线段BE长的最大值.
问题解决:
(3)①如图3,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(5,0),点P为线段AB外一动点,且PA=2,PM=PB,∠BPM=90°,求线段AM长的最大值及此时点P的坐标.
②如图4,在四边形ABCD中,AB=AD,∠BAD=60°,BC=4
,若对角线BD⊥CD于点D,请直接写出对角线AC的最大值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示的二次函数y=ax2+bx+c的图象中,刘星同学观察得出了下面四条信息:
(1)b2-4ac>0;(2)c>1;(3)2a-b<0;(4)a+b+c<0.你认为其中错误的有( )

A.2个 B.3个 C.4个 D.1个
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知A(a,m)、B(2a,n)是反比例函数y=
(k>0)与一次函数y=-
x+b图象上的两个不同的交点,分别过A、B两点作x轴的垂线,垂足分别为C、D,连结OA、OB,若已知1≤a≤2,则求S△OAB的取值范围.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知反比例函数
和一次函数y=-x+a-1(a为常数)(1)当a=5时,求反比例函数与一次函数的交点坐标(5分)
(2)是否存在实数a,使反比例函数与一次函数有且只有一个交点,如果存在,求出实数a,如果不存在,说明理由(5分)
相关试题