【题目】方方同学在寒假社会调查实践活动中,对某罐头加工厂进行采访,获得了该厂去年的部分生产信息如下:
①该厂一月份罐头加工量为a吨;
②该厂三月份的加工量比一月份增长了44%;
③该厂第一季度共加工罐头182吨;
④该厂二月、三月加工量每月按相同的百分率增长;
⑤该厂从四月份开始设备整修更新,加工量每月按相同的百分率开始下降;
⑥六月份设备整修更新完毕,此月加工量为一月份的2.1倍,与五月份相比增长了46.68吨.
利用以上信息求:
(1)该厂第一季度加工量的月平均增长率;
(2)该厂一月份的加工量a的值;
(3)该厂第二季度的总加工量.
参考答案:
【答案】(1)20%;(2)50;(3)228.12吨.
【解析】
(1) 设第一季度加工量的月平均增长率为x,由该厂三月份的加工量比一月份增长了44%;列出方程,解之即可求得答案.
(2)该厂第一季度共加工罐头182吨; 由此列出方程,解之即可求得a值.
(3) 根据六月份产量为一月份的2.1倍求得六月份产量,六月份与五月份相比增长了46.68,由此列出等式求得五月份产量,设从三月到五月逐月下降的百分率为y,根据题意列出方程,解之求得从三月到五月逐月下降的百分率,从而求得四月产量,从而求得第二季度总产量.
解:(1)设第一季度加工量的月平均增长率为x,
由题意得
,
解得
(不合题意舍去),
∴第一季度加工量的月平均增长率为20%
(2)由题意得:
,
解得a=50,
(3)六月份产量为50×2.1=105吨.
五月份产量为105-46.68=58.32吨.
设从三月到五月逐月下降的百分率为y,
由题意得
,
解得:
(不合题意舍去),
∴从三月到五月逐月下降的百分率为10%.
∴四月产量为72×0.9=64.8吨,
∴第二季度总产量为64.8+58.32+105=228.12吨.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在Rt△ABC中,∠ACB=90°,AC=4cm,BC=3cm,将△ABC沿AB方向向右平移得到△DEF,若AE=8cm.
(1)求△ABC向右平移的距离AD的长;
(2)求四边形AEFC的面积.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,点O为直线AB上一点,过点O作射线OC,OD,使射线OC平分∠AOD.
(1)当∠BOD=50°时,∠COD= °;
(2)将一直角三角板的直角顶点放在点O处,当三角板MON的一边OM与射线OC重合时,如图2.
①在(1)的条件下,∠AON= °;
②若∠BOD=70°,求∠AON的度数;
③若∠BOD=α,请直接写出∠AON的度数(用含α的式子表示).

-
科目: 来源: 题型:
查看答案和解析>>【题目】在△ABC中,AB=AC,点D在边BC所在的直线上,过点D作DF∥AC交直线AB于点F,DE∥AB交直线AC于点E,构造出平行四边形AEDF.

(1)若点D在线段BC上时. ①求证:FB=FD.②求证:DE+DF=AC.
(2)点D在边BC所在的直线上,若AC=8,DE=3,请作出简单示意图求DF的长度,不需要证明.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,有两个小机器人A、B在一条笔直的道路上由西向东行走,两机器人相距6cm,即AB=6cm.其中机器人A的速度为3cm/s,机器人B的速度为2cm/s.设机器人B行走的时间为t(s).
(1)若两机器人同时出发,
①当t=
时,AB= cm;当t=7时,AB= cm;②当两机器人相距4cm时,求机器人B行走的时间t的值;
(2)若机器人B先行走2s,机器人A再行走,当两机器人相距10cm时,请直接写出t的值.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线y=kx+b经过点A(5,0),B(1,4).

(1)求直线AB的表达式;
(2)若直线y=2x-4与直线AB相交于点C,求点C的坐标;
(3)根据图象,写出关于x的不等式kx+b>2x-4>0的解集.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在8×8的方格中建立平面直角坐标系,有点A(﹣2,2)、B(﹣3,1)、C(﹣1,0),P(a,b)是△ABC的AC边上点,将△ABC平移后得到△A1B1C1,点P的对应点为P1(a+4,b+2).
(1)画出平移后的△A1B1C1,写出点A1、C1的坐标;
(2)若以A、B、C、D为顶点的四边形为平行四边形,写出方格中D点的坐标.

相关试题