【题目】抛物线y=ax2+bx+c的顶点为D(–1,2),与x轴的一个交点A在点(–3,0)和(–2,0)之间,其部分图象如下图,则以下结论:①b2–4ac<0;②a+b+c<0;③c–a=2;④方程ax2+bx+c–2=0有两个相等的实数根.其中正确结论的个数为( )
![]()
A. 1个 B. 2个 C. 3个 D. 4个
参考答案:
【答案】C
【解析】试题分析:由抛物线与x轴有两个交点,可知b2-4ac>0,所以①错误;
由抛物线的顶点为D(-1,2),可知抛物线的对称轴为直线x=-1,然后由抛物线与x轴的一个交点A在点(-3,0)和(-2,0)之间,可知抛物线与x轴的另一个交点在点(0,0)和(1,0)之间,因此当x=1时,y<0,即a+b+c<0,所以②正确;
由抛物线的顶点为D(-1,2),可知a-b+c=2,然后由抛物线的对称轴为直线x=
=-1,可得b=2a,因此a-2a+c=2,即c-a=2,所以③正确;
由于当x=-1时,二次函数有最大值为2,即只有x=-1时,ax2+bx+c=2,因此方程ax2+bx+c-2=0有两个相等的实数根,所以④正确.
故选:C.
-
科目: 来源: 题型:
查看答案和解析>>【题目】计算下列各题:
(1)3.587-(-5)+(-5
)+(+7)-(+3
)-(+1.587);(2)(-1)5×{[-4
÷(-2)2+(-1.25)×(-0.4)]÷(-
)-32}. -
科目: 来源: 题型:
查看答案和解析>>【题目】解下列方程:
(1)

(2)

(3)278(x﹣3)﹣463(6﹣2x)﹣888(7﹣21x)=0
(4)

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,等边三角形
的边长为4,点
是△ABC的中心,
,
的两边
与
分别相交于
,
绕
点顺时针旋转时,下列四个结论正确的个数是( )①
;②
;③
;④
周长最小值是9.
A.1个B.2个C.3个D.4个
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,在Rt△ABC中,∠C=90°,点E在斜边AB上,以AE为直径的⊙O与BC边相切于点D,连结AD.
(1)求证:AD是∠BAC的平分线;
(2)若AC=3,BC=4,求⊙O的半径.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线y=﹣x+10与x轴、y轴分别交于点B,C,点A的坐标为(8,0),P(x,y)是直线y=﹣x+10在第一象限内一个动点.
(1)求△OPA的面积S与x的函数关系式,并写出自变量的x的取值范围;
(2)当△OPA的面积为10时,求点P的坐标.

-
科目: 来源: 题型:
查看答案和解析>>【题目】(1)如图1,在等边△ABC中,点M是边BC上的任意一点(不含端点B、C),连结AM,以AM为边作等边△AMN,连结CN.求证:∠ABC=∠ACN.
【类比探究】
(2)如图2,在等边△ABC中,点M是边BC延长线上的任意一点(不含端点C),其它条件不变,(1)中结论∠ABC=∠ACN还成立吗?请说明理由.
【拓展延伸】
(3)如图3,在等腰△ABC中,BA=BC,点M是边BC上的任意一点(不含端点B、C),联结AM,以AM为边作等腰△AMN,使顶角∠AMN=∠ABC.连结CN.试探究∠ABC与∠ACN的数量关系,并说明理由.

相关试题