【题目】如图,等边△ABC和等边△ECD的边长相等,BC与CD两边在同一直线上,请根据如下要求,使用无刻度的直尺,通过连线的方式画图.
(1)在图1中画一个直角三角形; (2)在图2中画出∠ACE的平分线.
![]()
参考答案:
【答案】详见解析.
【解析】试题分析:(1)直接利用等边三角形的性质结合菱形的性质得出△ABD为直角三角形,同理可知,△BED也为直角三角形;
(2)利用菱形的判定与性质得出△AFG≌△EFH,得出FG=FH,进而结合角平分线的判定得出答案.
解:(1)如图①所示:连接AE,
∵△ABC与△ECD全等且为等边三角形,
∴四边形ACDE为菱形,连接AD,则AD平分∠EDC,
∴∠ADC=30°,
∵∠ABC=60°,
∴∠BAD=90°,
则△ABD为直角三角形,同理可知,△BED也为直角三角形;
(2)如图②所示:连接AE、BE、AD,则四边形ABCE和四边形ACDE为菱形,
则AC⊥BE,AD⊥CE,设BE,AD相交于F,AC交BE于点G,CE交AD于点H,
则FG⊥AC,FH⊥BC,
由(1)得:∠BEC=∠DAC,∠AEF=∠EAF,
则AF=EF,
在△AFG和△EFH中
∵∠AGF=∠FHE,
∠GFA=∠HFE,
AF=EF,
∴△AFG≌△EFH(AAS),
∴FG=FH,
由到角两边距离相等的点在角平分线上,可知,连接CF,GF为所作的角平分线.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线y=﹣x2﹣2x+3 的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点D为抛物线的顶点.

(1)求A、B、C的坐标;
(2)点M为线段AB上一点(点M不与点A、B重合),过点M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过点P作PQ∥AB交抛物线于点Q,过点Q作QN⊥x轴于点N.若点P在点Q左边,当矩形PMNQ的周长最大时,求△AEM的面积;
(3)在(2)的条件下,当矩形PMNQ的周长最大时,连接DQ.过抛物线上一点F作y轴的平行线,与直线AC交于点G(点G在点F的上方).若FG=2
DQ,求点F的坐标. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图①,已知线段AC∥y轴,点B在第一象限,且AO平分∠BAC,AB交y轴于G,连接OB,OC.
(1)判断△AOG的形状,并予以证明;
(2)若点B,C关于y轴对称,求证:AO⊥BO;
(3)在(2)的条件下,如图②,点M为OA上一点,且∠ACM=45°,BM交y轴于P,若点B的坐标为(3,1),求点M的坐标.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC中,AB=AC=5,AB的垂直平分线DE分别交AB,AC于E,D.
(1)若△BCD的周长为8,求BC的长;
(2)若BC=4,求△BCD的周长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】小明家、食堂、图书馆依次在同一条直线上,小明从家去食堂吃早餐,接着云图书馆读报,然后回家。如图反映了这个过程,小明离家的距离与时间之间的对应关系,下列说法错误的是( )

A. 小明从家到食堂用了8min B. 小明家离食堂0.6km,食堂离图书馆0.2km
C. 小明吃早餐用了30min,读报用了17min D. 小明从图书馆回家的平均速度为0.08km/min
-
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系中,点P的坐标为(a,b),点P的“变换点”P`的坐标定义如下:当
时,P`点坐标为(a,-b);当
时,P`点坐标为(b,-a)。线段l:
上所有点按上述“变换点”组成一个新的图形,若直线
与组成的新的图形有两个交点,则k的取值范围是( )A.
B.
或
C.
D. 
-
科目: 来源: 题型:
查看答案和解析>>【题目】一个装有进水管和出水管的容器,从某时刻开始4min内只进水不出水,在随后的8min内既进水又出水,接着关闭进水管直到容器内的水放完,每分钟的进水量和出水量是两个常数,容器内的水量y(单位:L)与时间(单价:min)之间的关系如图所示。在第_______分钟时该容器内的水恰好为10L.

相关试题