【题目】如图,△ABC为锐角三角形,AD是BC边上的高,正方形EFMN的一边MN在边BC上,顶点E、F分别在AB、AC上,其中BC=24cm,高AD=12cm.
(1)求证:△AEF∽△ABC:
(2)求正方形EFMN的边长.
![]()
参考答案:
【答案】(1)详见解析;(2)正方形的边长为8cm.
【解析】
(1)根据两角对应相等的两个三角形相似即可证明;
(2)利用相似三角形的性质,构建方程即可解决问题;
(1)证明:∵四边形EFMN是正方形,
∴EF∥BC,
∴∠AEF=∠B,∠AFE=∠C,
∴△AEF∽△ABC.
(2)解:设正方形EFMN的边长为xcm.
∴AP=AD-x=12-x(cm)
∵△AEF∽△ABC, AD⊥BC,
∴
,
∴
,
∴x=8,
∴正方形的边长为8cm.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,在△ABC中,∠A=30°,点P从点A出发以2cm/s的速度沿折线A﹣C﹣B运动,点Q从点A出发以a(cm/s)的速度沿AB运动,P,Q两点同时出发,当某一点运动到点B时,两点同时停止运动.设运动时间为x(s),△APQ的面积为y(cm2),y关于x的函数图象由C1,C2两段组成,如图2所示.

(1)求a的值;
(2)求图2中图象C2段的函数表达式;
(3)当点P运动到线段BC上某一段时△APQ的面积,大于当点P在线段AC上任意一点时△APQ的面积,求x的取值范围.
-
科目: 来源: 题型:
查看答案和解析>>【题目】数
、b在数轴上的位置如图所示, 
(1) a+b 0 , a-b 0; (填“>”、“=”或“<”)
(2) 化简:|a|-|b|+|a-b|
(3)在数轴上表示a+b与a-b;并把
、b、0、a+b、a-b按从小到的顺序用“<”连接起来。 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在Rt△ABC中,∠C=90°,△ACD沿AD折叠,使得点C落在斜边AB上的点E处.

(1)求证:△BDE∽△BAC;
(2)已知AC=6,BC=8,求线段AD的长度.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,正方形ABCD中,点E,F分别在BC,CD上,三角形AEF是等边三角形,连接AC交EF于G,下列结论:①BE=DF,②AG=2GC,③BE+DF=EF,④S△CEF=2S△ABE正确的有_____(只填序号).

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在矩形
中,
为对角线,点
为
边上一动点,连结
,过点
作
,垂足为
,连结
.(1)证明:
;(2)当点
为
的中点时,若
,求
的度数;(3)当点
运动到与点
重合时,延长
交
于点
,若
,则
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图 ,已知B C=90 ,AEED,ABCE ,点F是AD的中点.说明EF与AD垂直的理由.

解:因为 AEED (已知),
所以AED=90 (垂直的意义).
因为AECBBAE ( ),
即AEDDECBBAE .
又因为B=90 (已知),
所以BAECED (等式性质).
在△ ABE 与△ ECD 中,
BC(已知),ABEC(已知),BAECED,
所以△ ABE≌△ECD ( ),
得 ( 全等三角形的对应边相等),
所以△AED 是等腰三角形.
因为 (已知),
所以 EFAD ( ).
相关试题