【题目】某园林专业户计划投资种植花卉及树木,根据市场调查与预测,种植树木的利润y1与投资成本x成正比例关系,种植花卉的利润y2与投资成本x的平方成正比例关系,并得到了表格中的数据;
投资量x(万元) | 2 |
种植树木的利润y1(万元) | 4 |
种植花卉的利润y2(万元) | 2 |
(1)分别求出利润y1与y2关于投资量x的函数关系式;
(2)如果这位专业户计划以8万元资金投入种植花卉和树木,设他投入种植花卉金额万元,种植花卉和树木共获利润W万元,求出W与m之间的函数关系式,并求他至少获得多少利润?他能获取的最大利润是多少?
(3)若该专业户想获利不低于22万元,在(2)的条件下,求出投资种植花卉的金额m的范围.
参考答案:
【答案】
(1)解:设y1=kx,
由表格数据可知,函数y1=kx的图象过(2,4),
∴4=k2,
解得:k=2,
故利润y1关于投资量x的函数关系式是y1=2x(x≥0);
∵设y2=ax2,
由表格数据可知,函数y2=ax2的图象过(2,2),
∴2=a22,
解得:a=
,
故利润y2关于投资量x的函数关系式是:y2=
x2(x≥0);
(2)解:因为种植花卉m万元(0≤m≤8),则投入种植树木(8﹣m)万元,
w=2(8﹣m)+
m2=
m2﹣2m+16=
(m﹣2)2+14,
∵a=0.5>0,0≤m≤8,
∴当m=2时,w的最小值是14,
∵a=
>0,
∴当m>2时,w随m的增大而增大
∵0≤m≤8,
∴当m=8时,w的最大值是32,
答:他至少获得14万元利润,他能获取的最大利润是32万元.
(3)解:根据题意,当w=22时,
(m﹣2)2+14=22,
解得:m=﹣2(舍)或m=6,
故:6≤m≤8.
【解析】(1)根据题意设y1=kx、y2=ax2 , 将表格中数据分别代入求解可得;(2)由种植花卉m万元(0≤m≤8),则投入种植树木(8﹣m)万元,根据“总利润=花卉利润+树木利润”列出函数解析式,利用二次函数的性质求得最值即可;(3)根据获利不低于22万,列出不等式求解可得.
-
科目: 来源: 题型:
查看答案和解析>>【题目】2013年6月,某中学结合广西中小学阅读素养评估活动,以“我最喜爱的书籍”为主题,对学生最喜爱的一种书籍类型进行随机抽样调查,收集整理数据后,绘制出以下两幅未完成的统计图,请根据图1和图2提供的信息,解答下列问题:

(1)在这次抽样调查中,一共调查了多少名学生?
(2)请把折线统计图(图1)补充完整;
(3)求出扇形统计图(图2)中,体育部分所对应的圆心角的度数;
(4)如果这所中学共有学生1800名,那么请你估计最喜爱科普类书籍的学生人数. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点A(m,m+1),B(m+3,m﹣1)都在反比例函数
的图象上.
(1)求m,k的值;
(2)求直线AB的函数表达式;
(3)如果M为x轴上一点,N为y轴上一点,以点A,B,M,N为顶点的四边形是平行四边形,直接写出点M,N的坐标. -
科目: 来源: 题型:
查看答案和解析>>【题目】在图1﹣﹣图4中,菱形ABCD的边长为3,∠A=60°,点M是AD边上一点,且DM=
AD,点N是折线AB﹣BC上的一个动点.
(1)如图1,当N在BC边上,且MN过对角线AC与BD的交点时,则线段AN的长度为 .
(2)当点N在AB边上时,将△AMN沿MN翻折得到
△A′MN,如图2,
①若点A′落在AB边上,则线段AN的长度为
;
②当点A′落在对角线AC上时,如图3,求证:四边形AM A′N是菱形;
③当点A′落在对角线BD上时,如图4,求
的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①b2﹣4ac<0;②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;③2a+b=0;④当y>0时,x的取值范围是﹣1<x<3;⑤当x>0时,y随x增大而减小.其中结论正确的个数是( )

A.4个
B.3个
C.2个
D.1个 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,将边长为2的等边△OAB放置于平面直角坐标系xOy中,C是AB边上的一个点(不与端点A、B重合),作CD⊥OB于点D,若点C、D都在双曲线y=
上(k>0,x>0),则k的值为( ) 
A.
B.
C.
D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,DE是AC的垂直平分线,点D在BC上,△ABC的周长为20cm,△ABD的周长为12cm,则AE的长为cm.

相关试题