【题目】矩形OABC有两边在坐标轴的正半轴上,如图所示,双曲线y=
与边AB、BC分别交于D、E两点,OE交双曲线y=
于点G,若DG∥OA,OA=3,则CE的长为( ) ![]()
A.![]()
B.1.5
C.![]()
D.2
参考答案:
【答案】C
【解析】解:∵矩形OABC中,OA=3, ∴直线AB的解析式为x=3,
∴
,解得
,
∴D(3,2),
∵DG∥OA,
∴直线DG的解析式为y=2,
∴解
得
,
∴G(1,2),
设直线OE的解析式为y=kx(k≠0),把点G(1,2)代入得2=k,即直线OE的解析式为y=2x,
解
得
,
∴E(
,2
),
∴CE=
.
故选C.
【考点精析】掌握矩形的性质是解答本题的根本,需要知道矩形的四个角都是直角,矩形的对角线相等.
-
科目: 来源: 题型:
查看答案和解析>>【题目】爱好思考的小茜在探究两条直线的位置关系查阅资料时,发现了“中垂三角形”,即两条中线互相垂直的三角形称为“中垂三角形”.如图(1)、图(2)、图(3)中,AM、BN是△ABC的中线,AM⊥BN于点P,像△ABC这样的三角形均为“中垂三角形”.设BC=a,AC=b,AB=c.
(1)【特例探究】
如图1,当tan∠PAB=1,c=4
时,a= , b=;
如图2,当∠PAB=30°,c=2时,a= , b=;
(2)【归纳证明】
请你观察(1)中的计算结果,猜想a2、b2、c2三者之间的关系,用等式表示出来,并利用图3证明你的结论.
(3)【拓展证明】
如图4,ABCD中,E、F分别是AD、BC的三等分点,且AD=3AE,BC=3BF,连接AF、BE、CE,且BE⊥CE于E,AF与BE相交点G,AD=3
,AB=3,求AF的长.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知抛物线y=﹣
x2﹣
x+2与x轴交于A、B两点,与y轴交于点C
(1)求点A,B,C的坐标;
(2)点E是此抛物线上的点,点F是其对称轴上的点,求以A,B,E,F为顶点的平行四边形的面积;
(3)此抛物线的对称轴上是否存在点M,使得△ACM是等腰三角形?若存在,请求出点M的坐标;若不存在,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】某工厂分发年终奖金,具体金额和人数如下表所示,则下列对这组数据的说法中不正确的是( )
人 数
1
3
5
70
10
8
3
金额(元)
200000
150000
80000
15000
10000
8000
5000
A.极差是195000
B.中位数是15000
C.众数是15000
D.平均数是15000 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,过D、A、C三点的圆的圆心为E,过B、E、F三点的圆的圆心为D,如果∠A=63°,那么∠B= .

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,矩形ABCD中,点E,F,G,H分别在边AB,BC,CD,DA上,点P在矩形ABCD内.若AB=4cm,BC=6cm,AE=CG=3cm,BF=DH=4cm,四边形AEPH的面积为5cm2 , 则四边形PFCG的面积为cm2 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】解方程与不等式组
(1)解方程:
;
(2)解不等式组:
.
相关试题