【题目】如图,三角形ABC为一个电子跳蚤游戏盘,其中AB=8,AC=9,BC=10.如果电子跳蚤开始时在BC边上的点P0处,BP0=4,第一步跳蚤从点P0处跳到AC边上的点P1处,且CP1=CP0;第二步跳蚤从点P1处跳到AB边上的点P2处,且AP1=AP2;第三步跳蚤从点P2处跳回到BC边上的点P3处,且BP3=BP2……若跳蚤按上述规则跳下去,第n次的落点为Pn,则点P3与点P2019之间的距离为( )
![]()
A. 0 B. 1 C. 4 D. 5
参考答案:
【答案】A
【解析】
此题首先根据题意,分别计算电子跳骚的位置和三角形的顶点的距离,找到循环的规律:经过6次跳,电子跳蚤回到起跳点.根据这一规律确定第2016次落点的位置,从而确定P3与P2019之间的距离.
解:∵BC=10,BP0=4,知CP0=6,
∴CP1=6.
∵AC=9,
∴AP2=AP1=3.
∵AB=8,
∴BP3=BP2=5.
∴CP4=CP3=5,
∴AP4=4.
∴AP5=AP4=4,
∴BP5=4.
∴BP6=BP5=4.
此时P6与P0重合,即经过6次跳,电子跳蚤回到起跳点.
2019÷6=336……3,即P2019与P3重合,
∴点P3与点P2019之间的距离为0.
故选:A.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直角梯形AOCD的边OC在x轴上,O为坐标原点,CD垂直于x轴,D(5,4),AD=2.若动点E、F同时从点O出发,E点沿折线OA→AD→DC运动,到达C点时停止;F点沿OC运动,到达C点时停止,它们运动的速度都是每秒1个单位长度.设E运动x秒时,△EOF的面积为y(平方单位),则y关于x的函数图象大致为( )

A.
B.
C.
D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在ABCD中,E在DC上,若DE:EC=1:2,则BF:EF= .

-
科目: 来源: 题型:
查看答案和解析>>【题目】计算:
(1)
;(2)
;(3)
;(4)
;(5)(
)2;(6)
;(7)(
)(
);(8)
;(9)
;(10)
. -
科目: 来源: 题型:
查看答案和解析>>【题目】在一空旷场地上设计一落地为矩形ABCD的小屋,AB+BC=10m,拴住小狗的10m长的绳子一端固定在B点处,小狗在不能进入小屋内的条件下活动,其可以活动的区域面积为S(m2).

(1)如图1,若BC=4m,则S=m2 .
(2)如图2,现考虑在(1)中的矩形ABCD小屋的右侧以CD为边拓展一正△CDE区域,使之变成落地为五边形ABCED的小屋,其他条件不变,则在BC的变化过程中,当S取得最小值时,边BC的长为m. -
科目: 来源: 题型:
查看答案和解析>>【题目】[问题情境]勾股定理是一条古老的数学定理,它有很多种证明方法,我国汉代数学家赵爽根据弦图,利用面积法进行证明.著名数学家华罗庚曾提出把“数形关系(勾股定理)”带到其他星球,作为地球人与其他星球“人”进行第一次“谈话”的语言.
[定理表述]请你根据图(1)中的直角三角形叙述勾股定理(用文字及符号语言叙述).
[尝试证明]以图(1)中的直角三角形为基础,可以构造出以a、b为底,以a+b为高的直角梯形(如图(2)),请你利用图(2)验证勾股定理.
[知识拓展]利用图(2)中的直角梯形,我们可以证明
.其证明步骤如下:∵BC=a+b,AD=________,
又∵在直角梯形ABCD中,有BC________AD(填大小关系),即________,
∴
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,正方形网格MNPQ中,每个小方格的边长都相等,正方形ABCD的顶点在正方形MNPQ的4条边的小方格顶点上.

(1)设正方形MNPQ网格内的每个小方格的边长为1,求:
①△ABQ,△BCM,△CDN,△ADP的面积;
②正方形ABCD的面积.
(2)设MB=a,BQ=b,利用这个图形中的直角三角形和正方形的面积关系,你能验证已学过的哪一个数学公式或定理吗?
相关试题