【题目】函数y=
与y=﹣kx2+k(k≠0)在同一直角坐标系中的图象可能是( )
A.![]()
B.![]()
C.![]()
D.![]()
参考答案:
【答案】D
【解析】解:A、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象与k的取值相矛盾,A不符合题意.
B、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象与k的取值相矛盾,B不符合题意;
C、由双曲线的两支分别位于二、四象限,可得k<0,则﹣k>0,抛物线开口方向向上、抛物线与y轴的交点为y轴的负半轴上;本图象与k的取值相矛盾,C不符合题意;
D、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象符合题意,D符合题意;
所以答案是:D.
【考点精析】认真审题,首先需要了解反比例函数的图象(反比例函数的图像属于双曲线.反比例函数的图象既是轴对称图形又是中心对称图形.有两条对称轴:直线y=x和 y=-x.对称中心是:原点),还要掌握二次函数的图象(二次函数图像关键点:1、开口方向2、对称轴 3、顶点 4、与x轴交点 5、与y轴交点)的相关知识才是答题的关键.
-
科目: 来源: 题型:
查看答案和解析>>【题目】防疫期间的某天上午9:00,社区工作人员小孙从社区办公室出发,上门为本社区两户隔离人员家庭送生活用品,同时了解隔离人员的健康状况,她先去了距离社区较近的张家,稍作停留简单询问了情况后,又去了稍远一点的李家,这家人口较多,了解情况时间稍长一些,由于社区还有其它事情等待处理,结束工作后她快速返回社区办公室.已知小孙距离社区办公室的距离
(米)与离开办公室的时间
(分)之间的关系如图所示.请根据图象回答下列问题:
(1)图中
点表示的意义是什么?(2)小孙从李家出来后步行的速度是多少?
(3)小孙在李家停留了几分钟?小孙几点回到社区办公室?
-
科目: 来源: 题型:
查看答案和解析>>【题目】按要求完成下列推理证明.
如图,已知点D为BC延长线上一点,CE∥AB.
求证:∠A+∠B+∠ACB=180°

证明:∵CE∥AB,
∴∠1= ,( )
∠2= ,( )
又∠1+∠2+∠ACB=180°(平角的定义),
∴∠A+∠B+∠ACB=180°
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,两条直线
,
相交.
(1)如果
,求
,
的度数;(2)如果
,求
,
的度数. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在正方形ABCD中,AC为对角线,E为AB上一点,过点E作EF∥AD,与AC,DC分别交于点G,F,H为CG的中点,连接DE,EH,DH,FH.下列结论中结论正确的有( )
①EG=DF;
②∠AEH+∠ADH=180°;
③△EHF≌△DHC;
④若
=
,则S△EDH=13S△CFH . 
A.1个
B.2个
C.3个
D.4个 -
科目: 来源: 题型:
查看答案和解析>>【题目】任选一题作答,只计一题的成绩:
a.如图,在
的正方形网格中,点
,
,
,
,
,
都在格点上.连接点
,
得线段
.
(1)画出过
,
,
,
中的任意两点的直线;(2)互相平行的直线(线段)有 ;(请用“
”表示)(3)互相垂直的直线(线段)有 .
(请用“
”表示)b.如图,直线
和
相交于
,
,
是
的角平分线,
,求
的度数.其中一种解题过程如下,请在括号中注明根据,在横线上补全步骤.
解:




是
的角平分线









-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,从点P1(﹣1,0),P2(﹣1,﹣1),P3(1,﹣1),P4(1,1),P5(﹣2,1),P6(﹣2,﹣2),…依次扩展下去,则P2020的坐标为_____.

相关试题