【题目】阅读下列材料,然后解决问题:
截长法与补短法在证明线段的和、差、倍、分等问题中有着广泛的应用.具体的做法是在某条线段上截取一条线段等于某特定线段,或将某条线段延长,使之与某特定线段相等,再利用全等三角形的性质等有关知识来解决数学问题.
如图1,在△ABC中,若AB=12,AC=8,求BC边上的中线AD的取值范围.
解决此问题可以用如下方法:延长AD到点E使DE=AD,再连接BE,把AB、AC、2AD集中在△ABE中.利用三角形三边的关系即可得4<AE<20 ,则2<AD<10.
(1)问题解决:受到上题解法的启发,如图2,在正方形ABCD中,已知:∠EAF=45°,角的两边AE、AF分别与BC、CD相交于点E、F,若BE=2,DF=3,求EF的长.可延长 CD到E′,使得DE′=BE,连接AE′,先证△ABE≌△ADE′,进一步证明 △AEF≌△AE′F , 即可得EF=E′F, 那么EF=_________.
(2)问题拓展:
如图3,在⊙O中,AB、AD是⊙O的弦,且AB=AD,M、N是⊙O上的两点,∠MAN=
∠BAD.
①如图4,连接MN、MD,求证:MH=BM+DH,DM⊥AN;
②若点C在
(点C不与点A、D、N重合)上,连接CB、CD分别交AM、AN或其延长线于点E、F,直接写出EF、BE、DF之间的等式关系.
![]()
参考答案:
【答案】(1)5;(2)①见解析,②EF=BE+DF或DF=EF+BE
【解析】
(1)根据题目给定的思路进行求解即可;
(2)①延长MD到点M′,使得DM′=BM,连接AM′,如图5.仿照材料中的证明思路可证到AM=AM′,∠MAN=∠M′AN,然后利用等腰三角形的性质即可解决问题.②分两种情况讨论:Ⅰ.当点C在
上时,如图1、2;Ⅱ.当点C在
上时,如图3.借鉴①中的证明思路就可得到结论.
(1)延长 CD到E′,使得DE′=BE,连接AE′,
∵四边形ABCD是正方形,
∴AB=AB,∠B=∠ADC=90°,
∴∠AD E′=90°,
∵DE′=BE,
∴△ABE≌△ADE′,
∴AE′=AE,∠BAE=∠DA E′
∴∠E′AE=90°,
∵∠EAF=45°,
∴∠E′AF=45°,
∴∠E′AF=∠EAF,
在△AEF和△AE′F中,
,
∴ EF=E′F,
∵E′F=DE′+DF=BE+DF=2+3=5,
∴EF=5.
(2)①延长MD到点M′,使得DM′=BM,连接AM′,如图5.
![]()
∵∠ADM′+∠ADM=180°,∠ABM+∠ADM=180°,
∴∠ABM=∠ADM′.
在△ABM和△ADM′中,
.
∴△ABM≌△ADM′(SAS).
∴AM=AM′∠BAM=∠DAM′.
∴∠MAM′=∠BAD.
∵∠MAN=
∠BAD,
∴∠MAN=
∠MAM′.
∴∠MAN=∠M′AN.
∵AM=AM′,∠MAN=∠M′AN,
∴MH=M′H,AH⊥MM′.
∴MH=M′H=DM′+DH=BM+DH,DM⊥AN.
②②Ⅰ.当点C在
上时,如图1、2.
![]()
![]()
同理可得:EF=BE+DF.
Ⅱ.当点C在
上时,如图3.
![]()
同理可得:DF=EF+BE..
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,D是BC的中点,DE⊥BC交AC于点E,已知AD=AB,连接BE交AD于点F,下列结论:①BE=CE;②∠CAD=∠ABE;③S△ABF=3S△DEF;④△DEF∽△DAE,其中正确的有( )

A. 1个 B. 4个 C. 3个 D. 2个
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,有一块直角三角形纸片,两直角边AB=6,BC=8,将△ABC折叠,使AB落在斜边AC上,折痕为AD,则BD的长为( )

A. 6B. 5C. 4D. 3
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,Rt△ABC中,∠C=90°,AC=
,tanB=
.半径为2的⊙C, 分别交AC、BC于点D、E,得到
.(1)求证:AB为⊙C的切线;
(2)求图中阴影部分的面积.

-
科目: 来源: 题型:
查看答案和解析>>【题目】某校为了了解九年级学生体育测试成绩情况,以九年(1)班学生的体育测试成绩为样本,按A、B、C、D四个等级进行统计,并将统计结果绘制如下两幅统计图,请你结合图中所给信息解答下列问题:(说明:A级:90分﹣100分;B级:75分﹣89分;C级:60分﹣74分;D级:60分以下)
(1)写出D级学生的人数占全班总人数的百分比为 ,C级学生所在的扇形圆心角的度数为 ;
(2)该班学生体育测试成绩的中位数落在等级 内;
(3)若该校九年级学生共有500人,请你估计这次考试中A级和B级的学生共有多少人?

-
科目: 来源: 题型:
查看答案和解析>>【题目】汽车公司有甲、乙两种货车可供租用,现有一批货物要运往某地,货主准备租用该公司货车,已知以往甲、乙两种货车运货情况如下表:

(1)甲、乙两种货车每辆可装多少吨货物?
(2)若货主需要租用该公司的甲种货车8辆,乙种货车6辆,刚好运完这批货物,如按每吨付运费50元,则货主应付运费总额为多少元?
(3)若货主共有20吨货,计划租用该公司的货车正好(每辆车都满载)把这批货运完,该汽车公司共有哪几种运货方案?
-
科目: 来源: 题型:
查看答案和解析>>【题目】下图反映的过程是小明从家去菜地浇水,又去玉米地锄草,然后回家.其中x表示时间,y表示小明离他家的距离.根据图象回答下列问题:

①菜地离小明家多远?小明走到菜地用了多少时间?
②小明给菜地浇水用了多少时间?
③玉米地离菜地、小明家多远?小明从玉米地走回家平均速度是多少?
相关试题