【题目】已知:O是直线AB上的一点,
是直角,OE平分
.
(1)如图1.若
.求
的度数;
(2)在图1中,
,直接写出
的度数(用含a的代数式表示);
(3)将图1中的
绕顶点O顺时针旋转至图2的位置,探究
和
的度数之间的关系.写出你的结论,并说明理由.
![]()
参考答案:
【答案】(1)
;(2)
;(3)
,理由见解析.
【解析】
(1)先根据补角的定义求出∠BOC的度数,再由角平分线的性质得出∠COE的度数,根据∠DOE=∠COD-∠COE即可得出结论;
(2)同(1)可得出结论;
(3)先根据角平分线的定义得出∠COE=∠BOE=
∠BOC,再由∠DOE=∠COD-∠COE即可得出结论.
(1)∵
是直角,
,
,
,
∵OE平分
,
,
.
(2)
是直角,
,
,
,
∵OE平分
,
,
.
(3)
,
理由是:
,OE平分
,
,
,
,
,
即
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,梯形ABCD中,AD∥BC,BC=20cm,AD=10cm,现有两个动点P、Q分别从B、D两点同时出发,点P以每秒2cm的速度沿BC向终点C移动,点Q以每秒1cm的速度沿DA向终点A移动,线段PQ与BD相交于点E,过E作EF∥BC交CD于点F,射线QF交BC的延长线于点H,设动点P、Q移动的时间为t(单位:秒,0<t<10).

(1)当t为何值时,四边形PCDQ为平行四边形?
(2)在P、Q移动的过程中,线段PH的长是否发生改变?如果不变,求出线段PH的长;如果改变,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】近两年,国际市场黄金价格涨幅较大,中国交通银行推出“沃德金”的理财产品,即以黄金为投资产品,投资者从黄金价格的上涨中赚取利润.上周五黄金的收盘价为285元/克,下表是本周星期一至星期五黄金价格的变化情况.(注:星期一至星期五开市,星期六.星期日休市)
星期
一
二
三
四
五
收盘价的变化(与前一天收盘价比较)
+7
+5


+8
问:(1)本周星期三黄金的收盘价是多少?
(2)本周黄金收盘时的最高价.最低价分别是多少?
(3)上周,小王以周五的收盘价285元/克买入黄金1000克,已知买入与卖出时均需支付成交金额的千分之五的交易费,卖出黄金时需支付成交金额的千分之三的印花税.本周,小王以周五的收盘价全部卖出黄金1000克,他的收益情况如何?
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知a、b、c满足|a﹣
|+
+(c﹣4
)2=0.(1)求a、b、c的值;
(2)判断以a、b、c为边能否构成三角形?若能构成三角形,此三角形是什么形状?并求出三角形的面积;若不能,请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知抛物线y=ax2+bx+3(a≠0)经过A(3,0),B(4,1)两点,且与y轴交于点C.

(1)求抛物线y=ax2+bx+3(a≠0)的函数关系式及点C的坐标;
(2)如图(1),连接AB,在题(1)中的抛物线上是否存在点P,使△PAB是以AB为直角边的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由;
(3)如图(2),连接AC,E为线段AC上任意一点(不与A、C重合)经过A、E、O三点的圆交直线AB于点F,当△OEF的面积取得最小值时,求点E的坐标.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,∠ACB=90°,点D,E分别是边BC,AB上的中点,连接DE并延长至点F,使EF=2DF,连接CE、AF.
(1)证明:AF=CE;
(2)当∠B=30°时,试判断四边形ACEF的形状并说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知直线y=﹣x+2分别与x轴,y轴交于A,B两点,与双曲线y=
交于E,F两点,若AB=2EF,则k的值是( ) 
A.﹣1
B.1
C.
D.
相关试题