【题目】如图,在ABCD中,对角线AC与BD交于点O,若增加一个条件,使ABCD成为菱形,下列给出的条件不正确的是( )![]()
A.AB=AD
B.AC⊥BD
C.AC=BD
D.∠BAC=∠DAC
参考答案:
【答案】C
【解析】解:A、根据菱形的定义可得,当AB=AD时ABCD是菱形;
B、根据对角线互相垂直的平行四边形是菱形即可判断,ABCD是菱形;
C、对角线相等的平行四边形是矩形,不一定是菱形,命题错误;
D、∠BAC=∠DAC时,
∵ABCD中,AD∥BC,
∴∠ACB=∠DAC,
∴∠BAC=∠ACB,
∴AB=BC,
∴ABCD是菱形.
∴∠BAC=∠DAC.故命题正确.
所以答案是:C.
【考点精析】掌握平行四边形的性质和菱形的判定方法是解答本题的根本,需要知道平行四边形的对边相等且平行;平行四边形的对角相等,邻角互补;平行四边形的对角线互相平分;任意一个四边形,四边相等成菱形;四边形的对角线,垂直互分是菱形.已知平行四边形,邻边相等叫菱形;两对角线若垂直,顺理成章为菱形.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,直线y=﹣x+3与抛物线
交于A、B两点,点A在x轴上,点B的横坐标为
.动点P在抛物线上运动(不与点A、B重合),过点P作y轴的平行线,交直线AB于点Q.当PQ不与y轴重合时,以PQ为边作正方形PQMN,使MN与y轴在PQ的同侧,连结PM.设点P的横坐标为m.
(1)求b、c的值.
(2)当点N落在直线AB上时,直接写出m的取值范围.
(3)当点P在A、B两点之间的抛物线上运动时,设正方形PQMN的周长为C,求C与m之间的函数关系式,并写出C随m增大而增大时m的取值范围.
(4)当△PQM与坐标轴有2个公共点时,直接写出m的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线AB∥CD,AE平分∠CAB,AE与CD相交于点E,∠ACD=40°,则∠DEA=( )

A.40°
B.110°
C.70°
D.140° -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知AB//CD,分别探究下列三个图形中∠APC和∠PAB,∠PCD的关系.

结论:(1)__________________________
(2)__________________________
(3)__________________________
-
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系中,点
为第一象限内一点,点
为
轴正半轴上一点,分别连接
,
,
为等边三角形,点
的横坐标为4.
(1)如图1,求线段
的长;(2)如图2,点
在线段
上(点
不与点
、点
重合),点
在线段
的延长线上,连接
,
,
,设
的长为
,
的长为
,求
与
的关系式(不要求写出
的取值范围)(3)在(2)的条件下,点
为第四象限内一点,分别连接
,
,
,
为等边三角形,线段
的垂直平分线交
的延长线于点
,交
于点
,连接
,交
于点
,连接
,若
,求点
的横坐标. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,若AB∥CD,EF与AB 、CD分别相交于E、F,EP⊥EF,∠EFD的平分线与EP相交于点P,且∠BEP=40°,求∠EFP的度数.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知射线CB//OA,∠C=∠OAB=100°,E、F在CB上,且满足∠FOB=∠AOB,OE平分∠COF.

(1)求∠EOB的度数.(直接写出结果,无需解答过程)
∠EOB=__________°
(2)若在OC右侧左右平行移动AB,那么∠OBC:∠OFC的值是否随之发生变化?若变化,请找出变化规律;若不变,请求出这个比值.
(3)在OC右侧左右平行移动AB的过程中,是否存在使∠OEC=∠OBA的情况?若存在,请直接写出∠OEC度数;若不存在,请说明理由.
相关试题