【题目】如图①,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,连接BD,CE,BD和CE相交于点F,若△ABC不动,将△ADE绕点A任意旋转一个角度.
(1)求证:△BAD≌△CAE.
(2)如图①,若∠BAC=∠DAE=90°,判断线段BD与CE的关系,并说明理由;
(3)如图②,若∠BAC=∠DAE=60°,求∠BFC的度数;
(4)如图③,若∠BAC=∠DAE=
,直接写出∠BFC的度数(不需说明理由)
![]()
参考答案:
【答案】(1)证明见解析;(2)BD⊥CE,理由见解析;(3)
;(4)![]()
【解析】试题分析:(1)由等边三角形的性质得出AB=AC,AD=AE,∠BAC=∠EAD,从而得出∠BAD=∠CAE,即可得出△BAD≌△CAE.
(2)判定BD与CE的关系,可以根据角的大小来判定.由∠BAC=∠DAE可得∠BAD=∠CAE,进而得△BAD≌△CAE,所以∠CBF+∠BCF=∠ABC+∠ACB.再由∠BAC=∠DAE=90°,所以BD⊥CE.
(3)根据①的∠CBF+∠BCF=∠ABC+∠ACB,所以∠BFC=∠BAC,再由∠BAC=∠DAE=60°,所以∠BFC=60°
(4)根据②∠BFC=∠BAC,所以∠BFC=α
试题解析:(1)证明:∵∠BAC=∠DAE,
∴∠BAC+∠CAD=∠DAE+∠CAD,
即∠BAD=∠CAE
在△BAD与△CAE中,AB=AC,∠BAD=∠CAE,AD=AE,
∴△BAD≌△CAE(SAS),
(2)BD与CE相互垂直,BD=CE.
由(1)知,△BAD≌△CAE(SAS),
∴∠ABD=∠ACE,BD=CE,
∵∠BAC=90°,
∴∠CBF+∠BCF=∠ABC+∠ACB=90°,
∴∠BFC=90°
∴BD⊥CE.
(3)由题①得∠CBF+∠BCF=∠ABC+∠ACB,
∵∠BAC=∠DAE=60°,
∴∠CBF+∠BCF=∠ABC+∠ACB,
∴∠BFC=∠BAC
∴∠BFC=60°.
(4)由题(1)得∠CBF+∠BCF=∠ABC+∠ACB,
∵∠BAC=∠DAE=α,
∴∠CBF+∠BCF=∠ABC+∠ACB,
∴∠BFC=∠BAC
∴∠BFC=α.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知点O是∠APB内的一点,M,N分别是点O关于PA、PB的对称点,连接MN,与PA、PB分别相交于点E、F,已知MN=6cm.
(1)求△OEF的周长;
(2)连接PM、PN,若∠APB=ɑ,求∠MPN(用含ɑ的代数式表示);
(3)当∠ɑ=30°,判定△PMN的形状,并说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】一个角的补角是它的余角的4倍,则这个角是_____________度.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知三角形两边长分别为3和8,则该三角形第三边的长可能是( )
A.3
B.5
C.8
D.11 -
科目: 来源: 题型:
查看答案和解析>>【题目】某超市账目记录显示,第一天卖出39支牙刷和21盒牙膏,收入300元;第二天以同样的价格卖出同样的52支牙刷和28盒牙膏,收入应该是____________元.
-
科目: 来源: 题型:
查看答案和解析>>【题目】填空:x2+10x+ =(x+ )2 .
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图9.1,在△ABC中,∠BAC=90°,点D为AB边上的一点,过点D作DE⊥BC于E,连接CD,过点A作AF∥DE交CD于点F,交BC于点G,连接EF.
(1)求证:△BED∽△BAC;
(2)写出所有与△BED相似的三角形(△BAC除外);
(3)如图9.2,若四边形ADEF是菱形,连接对角线AE与DF相交于点O.
①求证:OA2=OC·OF;
②当AE=12,CF=5时,求OF的长,并直接写出△BED与△BAC的相似比
的值.
相关试题