【题目】如图,在△ABC中,∠C=60°,点D、E分别为边BC、AC上的点,连接DE,过点E作EF∥BC交AB于F,若BC=CE,CD=6,AE=8,∠EDB=2∠A,则BC=_____.
![]()
参考答案:
【答案】16
【解析】
利用∠EDB=2∠A作辅助线,求出DE即可.
连接BE,延长BC使CG=AE,连接EG.因为BC=CE,∠ACB=60°,所以△BEC为等边三角形,且EF∥BC,所以∠EBC=∠BEC=∠FEB=∠AEF=∠ACB=60°.因为EC=BE,CG=AE,∠AEB=∠ECG=120°,所以△AEB≌△GCE,所以,∠G=∠A.又因为∠EDB=2∠A,所以,∠G=∠DEG,所以,DE=DG=6+8=14.从点E作EH垂直于BC,垂足为H,则
,
.根据勾股定理可知
.求得EC=16,所以BC=16.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,以等边三角形ABC的BC边为直径画半圆,分别交AB、AC于点E、D,DF是圆的切线,过点F作BC的垂线交BC于点G.若AF的长为2,则FG的长为

A. 4 B.
C. 6 D. 
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,在平面直角坐标系中,直线
与
轴,
轴分别交于
,
两点.直线
与
交于点
且与
轴,
轴分别交于
,
.


图1 图2 图3
(1)求出点
坐标,直线
解析式;(2)如图2,点
为线段
上一点(不含端点),连接
,一动点
从
出发,沿线段
以每秒
个单位的速度运动到点
,再沿线段
以每秒
个单位的速度运动到点
停止,求点
在整个运动过程中所用最少时间时点
的坐标;(3)如图3,平面直角坐标系中有一点
,使得
,求点
坐标. -
科目: 来源: 题型:
查看答案和解析>>【题目】一位篮球运动员在距离篮圈中心水平距离4m处起跳投篮,球沿一条抛物线运动,当球运动的水平距离为2.5m时,达到最大高度3.5m,然后准确落入篮框内.已知篮圈中心距离地面高度为3.05m,在如图所示的平面直角坐标系中,下列说法正确的是( )

A. 此抛物线的解析式是y=﹣
x2+3.5B. 篮圈中心的坐标是(4,3.05)
C. 此抛物线的顶点坐标是(3.5,0)
D. 篮球出手时离地面的高度是2m
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,∠1=∠2,AE⊥OB于E,BD⊥OA于D,交点为C,则图中全等三角形共有( )

A. 2对 B. 3对 C. 4对 D. 5对
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足.下列结论:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=AE=EC;④BA+BC=2BF;其中正确的是( )

A.①②③B.①③④C.①②④D.①②③④
-
科目: 来源: 题型:
查看答案和解析>>【题目】某校有1500名学生,为了解全校学生的上学方式,该校数学兴趣小组在全校随机抽取了100名学生进行抽样调查.整理样本数据,得到下列图表(频数分布表中部分划记被墨水盖住):
某校100名学生上学方式频数分布表
方式
划记
频数
步行
正正正
15
骑车
正正正正正

29
乘公共交通工具
正正正正正正
30
乘私家车
其它
合计
100
(1)本次调查的个体是 .
(2)求频数分布表中,“乘私家车”部分对应的频数.
(3)请估计该校1500名学生中,选择骑车、乘公交和步行上学的一共有多少人?

相关试题