【题目】某校有1500名学生,为了解全校学生的上学方式,该校数学兴趣小组在全校随机抽取了100名学生进行抽样调查.整理样本数据,得到下列图表(频数分布表中部分划记被墨水盖住):
某校100名学生上学方式频数分布表
方式 | 划记 | 频数 |
步行 | 正正正 | 15 |
骑车 | 正正正正正 | 29 |
乘公共交通工具 | 正正正正正正 | 30 |
乘私家车 | ||
其它 | ||
合计 | 100 |
(1)本次调查的个体是 .
(2)求频数分布表中,“乘私家车”部分对应的频数.
(3)请估计该校1500名学生中,选择骑车、乘公交和步行上学的一共有多少人?
![]()
参考答案:
【答案】(1)每名学生的上学方式;(2)20;(3)该校1500名学生中,选择骑车、乘公交和步行上学的一共有1110人
【解析】
见解析.
(1)由题意可得,
本次调查的个体是每名学生的上学方式,
故答案为:每名学生的上学方式;
(2)由题意可得,
乘私家车对应的频数为:100×(1﹣6%﹣15%﹣29%﹣30%)=100×20%=20,
即频数分布表中,“乘私家车”部分对应的频数是20;
(3)由题意可得,
该校1500名学生中,选择骑车、乘公交和步行上学的一共有:1500×(29%+30%+15%)=1500×74%=1110(人),
答:该校1500名学生中,选择骑车、乘公交和步行上学的一共有1110人.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,∠C=60°,点D、E分别为边BC、AC上的点,连接DE,过点E作EF∥BC交AB于F,若BC=CE,CD=6,AE=8,∠EDB=2∠A,则BC=_____.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,∠1=∠2,AE⊥OB于E,BD⊥OA于D,交点为C,则图中全等三角形共有( )

A. 2对 B. 3对 C. 4对 D. 5对
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足.下列结论:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=AE=EC;④BA+BC=2BF;其中正确的是( )

A.①②③B.①③④C.①②④D.①②③④
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知在△ABC中,点D、E分别是AB、AC上一点,且AD=AE,∠ABE=∠ACD,BE与CD相交于点F.试判断△BCF的形状,并说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).

(1)在图中的点上标出相应字母A、B、C,并求出△ABC的面积;
(2)在图中作出△ABC关于y轴的对称图形△A1B1C1;
(3)写出点A1,B1,C1的坐标.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是对角线,AG∥DB交CB的延长线于G.
(1)求证:△CDB≌△BAG.
(2)如果四边形BFDE是菱形,那么四边形AGBD是什么特殊四边形?并证明你的结论.

相关试题