【题目】如图,在△ABC中,∠ABC=60°,BC=2,CD是△ABC的一条高线.若E,F分别是CD和BC上的动点,则BE+EF的最小值是_____.
![]()
参考答案:
【答案】
.
【解析】
作B关于CD的对称点B′,过B′作B′F⊥BC于F交CD于E,则B′F的长度即为BE+EF的最小值,根据直角三角形的性质得到BD=
CD,根据已知条件得到BB′=BC,推出△CDB≌△BB′F,于是得到B′F=CD.
作B关于CD的对称点B′,过B′作B′F⊥BC于F交CD于E,
则B′F的长度即为BE+EF的最小值,
![]()
∵∠ABC=60°,CD⊥AB,
∴∠BCD=30°,
∴BD=
CD,
∵BD=
BB′,
∴BB′=BC,
在△CDB与△B′FB中,
,
∴△CDB≌△BB′F,(AAS)
∴B′F=CD=
BC=
.
故答案是:
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】盛盛同学到某高校游玩时,看到运动场的宣传栏中的部分信息(如下表):
院系篮球赛成绩公告
比赛场次
胜场
负场
积分
22
12
10
34
22
14
8
36
22
0
22
22
盛盛同学结合学习的知识设计了如下问题,请你帮忙完成下列问题:
(1)从表中可以看出,负一场积______分,胜一场积_______分;
(2)某队在比完22场的前提下,胜场总积分能等于其负场总积分的2倍吗?请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,∠C=90°,D是BC边上一点,以DB为直径的⊙O经过AB的中点E,交AD的延长线于点F,连结EF.

(1)求证:∠1=∠F.
(2)若sinB=
,EF=2
,求CD的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】以下是两张不同类型火车的车票(“
次”表示动车,“
次”表示高铁):
(1)根据车票中的信息填空:该列动车和高铁是__________向而行(填“相”或“同”).
(2)已知该列动车和高铁的平均速度分别为
、
,两列火车的长度不计.①经过测算,如果两列火车直达终点(即中途都不停靠任何站点),高铁比动车将早到
,求
、
两地之间的距离.②在①中测算的数据基础上,已知
、
两地途中依次设有
个站点
、
、
、
、
,且
,动车每个站点都停靠,高铁只停靠
、
两个站点,两列火车在每个停靠站点都停留
.求该列高铁追上动车的时刻.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在矩形ABCD中,E是AD的中点,将△ABE沿BE折叠,点A的对应点为点G.
(1)填空:如图1,当点G恰好在BC边上时,四边形ABGE的形状是___________形;
(2)如图2,当点G在矩形ABCD内部时,延长BG交DC边于点F.
求证:BF=AB+DF;
若AD=
AB,试探索线段DF与FC的数量关系.

-
科目: 来源: 题型:
查看答案和解析>>【题目】高铁的开通,给泰安市民出行带来了极大的方便,五一期间,乐乐和颖颖相约到青岛市某游乐场游玩,乐乐乘私家车从泰安出发1小时后,颖颖乘坐高铁从泰安出发,先到青岛火车站,然后转乘出租车到游乐园(换车时间忽略不计),两人恰好同时到达游乐园,他们离开泰安的距离y(千米)与时间t(小时)的关系如图所示,请结合图象解决下面问题.
(1)高铁的平均速度是每小时多少千米;
(2)当颖颖到达青岛火车站时,乐乐距离游乐园还有多少千米?

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正方形面积为4,若用
,
表示直角三角形的两直角边(
),下列四个说法:
①
,②
,③
,④
.其中说法正确的是 …………………………………………………………( )
A. ①② B. ①②③ C. ①②④ D. ①②③④
相关试题