【题目】如图,
中,
,
于
,
平分
,且
于
,与
相交于点
,
是
边的中点,连接
与
相交于点
,下列结论正确的有( )个
①
;②
;③
;④
是等腰三角形;⑤
.
![]()
A.
个B.
个C.
个D.
个
参考答案:
【答案】B
【解析】
只要证明△BDF≌△CDA,△BAC是等腰三角形,∠DGF=∠DFG=67.5°,即可判断①②③④正确,作GM⊥BD于M,只要证明GH<DG即可判断⑤错误.
∵CD⊥AB,BE⊥AC,
∴∠BDC=∠ADC=∠AEB=90°,
∴∠A+∠ABE=90°,∠ABE+∠DFB=90°,
∴∠A=∠DFB,
∵∠ABC=45°,∠BDC=90°,
∴∠DCB=90°45°=45°=∠DBC,
∴BD=DC,
在△BDF和△CDA中
,
∴△BDF≌△CDA(AAS),
∴BF=AC,故①正确.
∵∠ABE=∠EBC=22.5°,BE⊥AC,
∴∠A=∠BCA=67.5°,故③正确,
∴BA=BC,
∵BE⊥AC,
∴AE=EC=
AC=
BF,故②正确,
∵BE平分∠ABC,∠ABC=45°,
∴∠ABE=∠CBE=22.5°,
∵∠BDF=∠BHG=90°,
∴∠BGH=∠BFD=67.5°,
∴∠DGF=∠DFG=67.5°,
∴DG=DF,故④正确.
作GM⊥AB于M.
∵∠GBM=∠GBH,GH⊥BC,
∴GH=GM<DG,
∴S△DGB>S△GHB,
∵S△ABE=S△BCE,
∴S四边形ADGE<S四边形GHCE.故⑤错误,
∴①②③④正确,
故选:B.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知排球场的长度OD为18 m,位于球场中线处球网的高度AB为2.4 m,一队员站在点O处发球,排球从点O的正上方1.6 m的C点向正前方飞出,当排球运行至离点O的水平距离OE为6 m时,到达最高点G建立如图所示的平面直角坐标系
(1) 当球上升的最大高度为3.4 m时,对方距离球网0.4 m的点F处有一队员,他起跳后的最大高度为3.1 m,问这次她是否可以拦网成功?请通过计算说明
(2) 若队员发球既要过球网,又不出边界,问排球飞行的最大高度h的取值范围是多少?(排球压线属于没出界)

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点
在
的内部,点
关于
、
的对称点分别为
、
,连接
交
、
于点
、
,若
,则下列结论错误的是( )
A.
B.
C.
D.
垂直平分
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知△ABC是等边三角形
(1) 如图1,点E在线段AB上,点D在射线CB上,且ED=EC,将△BCE绕点C顺时针旋转60°至△ACF,连接EF,猜想线段AB、DB、AF之间的数量关系
(2) 点E在线段BA的延长线上,其他条件与(1)中的一致,请在图2上将图形补充完整,并猜想证明线段AB、DB、AF之间的数量关系

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知如图,抛物线y=ax2+3ax+c(a>0)与y轴交于点C,与x轴交于A、B两点,点A在点B左侧,点B的坐标为(1,0),C(0,-3)
(1) 求抛物线的解析式;
(2) 若点D是线段AC下方抛物线上的动点,求四边形ABCD面积的最大值.
(3) 若点E在x轴上,点P在抛物线上,是否存在以A、C、E、P为顶点且以AC为一边的平行四边形?若存在,求点P的坐标;若不存在,请说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在
中,
,
平分
交边
于点
,
分别是
,
上的点,连结
,
.若
,
,
则
的最小值是__________.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在
中,
,点
、
、
分别在
、
、
边上,且
,
.
(1)求证:
是等腰三角形;(2)当
时,求
的度数;(3)当
为多少度时,
?请说明理由.
相关试题