【题目】在矩形ABCD中,AB=1,AD=
,AF平分∠DAB,过C点作CE⊥BD于E,延长AF.EC交于点H,下列结论中:①AF=FH;②BO=BF;③CA=CH;④BE=3ED.正确的是( )![]()
A.②③
B.③④
C.①②④
D.②③④
参考答案:
【答案】D
【解析】∵AB=1,AD=
,
∴BD=AC=2,OB=OA=OD=OC=1.
∴△OAB,△OCD为正三角形.
AF平分∠DAB,∴∠FAB=45°,即△ABF是一个等腰直角三角形.
∴BF=AB=1,BF=BO=1.
∵AF平分∠DAB,
∴∠FAB=45°,
∴∠CAH=45°﹣30°=15°.
∵∠ACE=30°(正三角形上的高的性质)∴∠AHC=15°,
∴CA=CH
由正三角形上的高的性质可知:DE=OD÷2,OD=OB,
∴BE=3ED.
所以正确的是②③④.
故选D.
【考点精析】掌握角平分线的性质定理和等腰三角形的性质是解答本题的根本,需要知道定理1:在角的平分线上的点到这个角的两边的距离相等; 定理2:一个角的两边的距离相等的点,在这个角的平分线上;等腰三角形的两个底角相等(简称:等边对等角).
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC的周长为26,点D,E都在边BC上,∠ABC的平分线垂直于AE,垂足为Q,∠ACB的平分线垂直于AD,垂足为P,若BC=10,则PQ的长为( )

A.
B.
C.3
D.4 -
科目: 来源: 题型:
查看答案和解析>>【题目】直线l1∥l2∥l3 , 且l1与l2的距离为1,l2与l3的距离为3,把一块含有45°角的直角三角形如图放置,顶点A,B,C恰好分别落在三条直线上,AC与直线l2交于点D,则线段BD的长度为( )

A.
B.
C.
D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC中,∠C=90°,∠ABC=60°,BD平分∠ABC , 若AD=6,则CD是( )

A.1
B.2
C.3
D.4 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC中,D为AB上一点,E为BC上一点,且AC=CD=BD=BE,∠A=50°,则∠CDE的度数为( )

A.50°
B.51°
C.51.5°
D.52.5° -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,CB=CA,∠ACB=90°,点D在边BC上(与B、C不重合),四边形ADEF为正方形,过点F作FG⊥CA,交CA的延长线于点G,连接FB,交DE于点Q,给出以下结论:
①AC=FG;②S△FAB:S四边形CBFG=1:2;③∠ABC=∠ABF;④AD2=FQAC,
其中正确的结论的个数是( )
A.1
B.2
C.3
D.4 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,边长为1的菱形ABCD的两个顶点B、C恰好落在扇形AEF的弧EF上.若∠BAD=120°,则弧BC的长度等于 .

相关试题