【题目】如图,已知四边形ABCD是正方形,E、F分别是DC和CB的延长线上的点,且DE=BF,连接AE、AF、EF. ![]()
(1)填空:△ABF可以由△ADE绕旋转中心点 , 按逆时针方向旋转度得到;
(2)若BC=8,DE=6,求△AEF的面积.
参考答案:
【答案】
(1)A;270
(2)解:∵四边形ABCD是正方形,BC=8,
∴AD=8,
在Rt△ADE中,DE=6,AD=8,
∴AE=
=10,
∵△ABF可以由△ADE绕旋转中心 A点,按顺时针方向旋转90 度得到,
∴AE=AF,∠EAF=90°,
∴△AEF的面积=
AE2=
×100=50(平方单位).
【解析】解:(1)△ABF可以由△ADE绕旋转中心点A,按逆时针方向旋转 270度得到.所以答案是:A,270;
【考点精析】通过灵活运用旋转的性质,掌握①旋转后对应的线段长短不变,旋转角度大小不变;②旋转后对应的点到旋转到旋转中心的距离不变;③旋转后物体或图形不变,只是位置变了即可以解答此题.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,给出四个结论,其中正确结论是( )

A.b2<4ac
B.2a+b=0
C.a+b+c>0
D.若点B(
,y1)、C(
,y2)为函数图象上的两点,则y1<y2 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC 顶点的坐标分别为 A (1,-1)、B(3,-1)、C(4,1).
⑴将△ABC向上平移1个单位,再向左平移1个单位,请画出平移后得到的△A1B1C1并写出点 A1、B1、C1 的坐标;
⑵若△A1B1C1 与△A1B1D 全等(D 点与 C1 不重合),直接写出点D的坐标.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知D、E分别为△ABC中AB、BC上的动点,直线DE与直线AC相交于F,∠ADE的平分线与∠B的平分线相交于P,∠ACB的平分线与∠F的平分线相交于Q.
(1)如图1,当F在AC的延长线上时,求∠P与∠Q之间的数量关系;
(2)如图2,当F在AC的反向延长线上时,求∠P与∠Q之间的数量关系(用等式表示).

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,A(a,b),B(c,0),|a-3|+(2b-c)2+
=0.
(1)求点A,B的坐标;
(2)如图,点C为x轴正半轴上一点,且OC=OA,点D为OC的中点,连AC,AD,请探索AD+CD与
AC之间的大小关系,并说明理由;
(3)如图,过点A作AE⊥y轴于E,F为x轴负半轴上一动点( 不与(-3,0)重合 ),G在EF延长线上,以EG为一边作∠GEN=45°,过A作AM⊥x轴,交EN于点M,连FM,当点F在x轴负半轴上移动时,式子
的值是否发生变化?若变化,求出变化的范围;若不变化,请求出其值并说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在水平地面点A处有一网球发射器向空中发射网球,网球飞行路线是一条抛物线,在地面上落点为B.有人在直线AB上点C(靠点B一侧)竖直向上摆放无盖的圆柱形桶,试图让网球落入桶内.已知AB=4米,AC=3米,网球飞行最大高度OM=5米,圆柱形桶的直径CD为0.5米,高为0.3米(网球的体积和圆柱形桶的厚度忽略不计).

(1)如图,建立直角坐标系,求此抛物线的解析式;
(2)如果竖直摆放7个圆柱形桶时,网球能不能落入桶内?
(3)当竖直摆放圆柱形桶至多多少个时,网球可以落入桶内? -
科目: 来源: 题型:
查看答案和解析>>【题目】已知,如图,直线l经过A(4,0)和B(0,4)两点,抛物线y=a(x﹣h)2的顶点为P(1,0),直线l与抛物线的交点为M.

(1)求直线l的函数解析式;
(2)若S△AMP=3,求抛物线的解析式.
相关试题