【题目】如图,在平面直角坐标系中,A(a,b),B(c,0),|a-3|+(2b-c)2+
=0.
![]()
(1)求点A,B的坐标;
(2)如图,点C为x轴正半轴上一点,且OC=OA,点D为OC的中点,连AC,AD,请探索AD+CD与
AC之间的大小关系,并说明理由;
![]()
(3)如图,过点A作AE⊥y轴于E,F为x轴负半轴上一动点( 不与(-3,0)重合 ),G在EF延长线上,以EG为一边作∠GEN=45°,过A作AM⊥x轴,交EN于点M,连FM,当点F在x轴负半轴上移动时,式子
的值是否发生变化?若变化,求出变化的范围;若不变化,请求出其值并说明理由.
![]()
参考答案:
【答案】(1)A(3,3),B(6,0);(2)AD+CD>
AC;(3)不变化,1.
【解析】
(1)利用非负性建立方程即可得出结论;
(2)延长AD到E,使DE=AD,连接OE,先证明△ACD≌△EOD, 得到AC=OE, 再依据三角形的三边关系即可得出结论;
(3)在AM上截取AN=OF,连EH,易证△AEH≌△OEF,再根据角与角之间的关系,证明△MEH≌△MEF,则有FM=HM,即可求得该式子的值.
解:(1)∵|a-3|+(2b-c)2+
=0,
∴
,解得
,
∴A(3,3),B(6,0).
(2)延长AD到E,使DE=AD,连接OE,则AE=2AD,
∵AD为△ABC的中线
∴OD=CD
在△ACD和△EOD中
,
∴△ACD≌△EOD
∴AC=OE
在△AOE中,根据三角形的三边关系有
AO+OE>>AE
而OC=OA,AE=2AD
∴2CD+2AD>AC
即AD+CD>
AC;
(3)不变,
在AM上截取AH=OF,连接EH,
∵A(3,3),
∴OE=AE,
∵∠A=∠EOF=90°,AH=OF,
∴△AEH≌△OEF(SAS),
∴EH=EF,∠AEH=∠FEO,
∵∠AEO=90°,
∴∠HEM=90°-∠AEH-∠MEO=90°-45°=45°,
∴∠NEH=∠MEF=45°,
∵EM=EM,
∴△MEH≌△MEF(SAS),
∴FM=HM,
∴
=
=
= 1.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC 顶点的坐标分别为 A (1,-1)、B(3,-1)、C(4,1).
⑴将△ABC向上平移1个单位,再向左平移1个单位,请画出平移后得到的△A1B1C1并写出点 A1、B1、C1 的坐标;
⑵若△A1B1C1 与△A1B1D 全等(D 点与 C1 不重合),直接写出点D的坐标.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知D、E分别为△ABC中AB、BC上的动点,直线DE与直线AC相交于F,∠ADE的平分线与∠B的平分线相交于P,∠ACB的平分线与∠F的平分线相交于Q.
(1)如图1,当F在AC的延长线上时,求∠P与∠Q之间的数量关系;
(2)如图2,当F在AC的反向延长线上时,求∠P与∠Q之间的数量关系(用等式表示).

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知四边形ABCD是正方形,E、F分别是DC和CB的延长线上的点,且DE=BF,连接AE、AF、EF.

(1)填空:△ABF可以由△ADE绕旋转中心点 , 按逆时针方向旋转度得到;
(2)若BC=8,DE=6,求△AEF的面积. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在水平地面点A处有一网球发射器向空中发射网球,网球飞行路线是一条抛物线,在地面上落点为B.有人在直线AB上点C(靠点B一侧)竖直向上摆放无盖的圆柱形桶,试图让网球落入桶内.已知AB=4米,AC=3米,网球飞行最大高度OM=5米,圆柱形桶的直径CD为0.5米,高为0.3米(网球的体积和圆柱形桶的厚度忽略不计).

(1)如图,建立直角坐标系,求此抛物线的解析式;
(2)如果竖直摆放7个圆柱形桶时,网球能不能落入桶内?
(3)当竖直摆放圆柱形桶至多多少个时,网球可以落入桶内? -
科目: 来源: 题型:
查看答案和解析>>【题目】已知,如图,直线l经过A(4,0)和B(0,4)两点,抛物线y=a(x﹣h)2的顶点为P(1,0),直线l与抛物线的交点为M.

(1)求直线l的函数解析式;
(2)若S△AMP=3,求抛物线的解析式. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC中,AD是BC边上的高,AE、BF分别是∠BAC、∠ABC的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=( )

A. 75° B. 80° C. 85° D. 90°
相关试题