【题目】如图,图1、图2、图3分别表示甲、乙、丙三人由A地到B地的路线图(箭头表示行进的方向).其中E为AB的中点,AH>HB,判断三人行进路线长度的大小关系为( ) ![]()
A.甲<乙<丙
B.乙<丙<甲
C.丙<乙<甲
D.甲=乙=丙
参考答案:
【答案】D
【解析】解:图1中,甲走的路线长是AC+BC的长度; 延长AD和BF交于C,如图2,![]()
∵∠DEA=∠B=60°,
∴DE∥CF,
同理EF∥CD,
∴四边形CDEF是平行四边形,
∴EF=CD,DE=CF,
即乙走的路线长是AD+DE+EF+FB=AD+CD+CF+BC=AC+BC的长;
延长AG和BK交于C,如图3,
与以上证明过程类似GH=CK,CG=HK,
即丙走的路线长是AG+GH+HK+KB=AG+CG+CK+BK=AC+BC的长;
即甲=乙=丙,
故选D.
【考点精析】本题主要考查了平行四边形的判定与性质的相关知识点,需要掌握若一直线过平行四边形两对角线的交点,则这条直线被一组对边截下的线段以对角线的交点为中点,并且这两条直线二等分此平行四边形的面积才能正确解答此题.
-
科目: 来源: 题型:
查看答案和解析>>【题目】为适应日益激烈的市场竞争要求,某工厂从2016年1月且开始限产,并对生产线进行为期5个月的升降改造,改造期间的月利润与时间成反比例;到5月底开始恢复全面生产后,工厂每月的利润都比前一个月增加10万元.设2016年1月为第1个月,第x个月的利润为y万元,其图象如图所示,试解决下列问题:

(1)分别求该工厂对生产线进行升级改造前后,y与x之间的函数关系式;
(2)到第几个月时,该工厂月利润才能再次达到100万元?
(3)当月利润少于50万元时,为该工厂的资金紧张期,问该工厂资金紧张期共有几个月? -
科目: 来源: 题型:
查看答案和解析>>【题目】正比例函数的图象和反比例函数的图象相交于A,B两点,点A在第二象限,点A的横坐标为﹣1,作AD⊥x轴,垂足为D,O为坐标原点,S△AOD=1.若x轴上有点C,且S△ABC=4,则C点坐标为_____.
-
科目: 来源: 题型:
查看答案和解析>>【题目】第一中学组织七年级部分学生和老师到苏州乐园开展社会实践活动,租用的客车有50座和30座两种可供选择.学校根据参加活动的师生人数计算可知:若只租用30座客车x辆,还差5人才能坐满;
(1)则该校参加此次活动的师生人数为 (用含x的代数式表示);
(2)若只租用50座客车,比只租用30座客车少用2辆,求参加此次活动的师生至少有多少人?
(3)已知租用一辆30座客车往返费用为400元,租用一辆50座客车往返费用为600元,学校根据师生人数选择了费用最低的租车方案,总费用为2200元,试求参加此次活动的师生人数.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知正比例函数的图象与反比例函数的图象都经过点P(2,3),点D是正比例函数图象上的一点,过点D作y轴的垂线,垂足分别Q,DQ交反比例函数的图象于点A,过点A作x轴的垂线,垂足为B,AB交正比例函数的图于点E.
(1)求正比例函数解析式、反比例函数解析式.
(2)当点D的纵坐标为9时,求:点E的坐标.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知直线
与双曲线
交于
两点,且点
的横坐标为
.
(1)求
的值;(2)若双曲线
上一点
的纵坐标为8,求
的面积;(3)过原点
的另一条直线
交双曲线
于
两点(
点在第一象限),若由点
为顶点组成的四边形面积为
,求点
的坐标. -
科目: 来源: 题型:
查看答案和解析>>【题目】△ABC在平面直角坐标系中的位置如图所示.
(1)在图中画出△ABC与关于y轴对称的图形△A1B1C1,并写出顶点A1、B1、C1的坐标;
(2)若将线段A1C1平移后得到线段A2C2,且A2(a,2),C2(-2,b),求a+b的值.

相关试题