【题目】如图,E,F分别是平行四边形ABCD的边AB,DC上的点,AF与DE相交于点P,FB与EC相交于点B,若S△APD=15cm2,S△BQC=25cm2,则阴影部分的面积为( )
![]()
A.10cm2 B.20cm2 C.30cm2 D.40cm2
参考答案:
【答案】D
【解析】
试题分析:连接E、F两点,由三角形的面积公式我们可以推出S△EFC=S△BCQ,S△EFD=S△ADF,所以S△EFG=S△BCQ,S△EFP=S△ADP,因此可以推出阴影部分的面积就是S△APD+S△BQC.
解:连接E、F两点,
∵四边形ABCD是平行四边形,
∴AB∥CD,
∴△EFC的FC边上的高与△BCF的FC边上的高相等,
∴S△EFC=S△BCF,
∴S△EFQ=S△BCQ,
同理:S△EFD=S△ADF,
∴S△EFP=S△ADP,
∵S△APD=15cm2,S△BQC=25cm2,
∴S四边形EPFQ=40cm2,
故选D.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】函数y=
与y=﹣kx2+k(k≠0)在同一直角坐标系中的图象可能是( )A.
B.
C.
D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知a﹣b=2,则代数式2a﹣2b﹣3的值是( )
A.1 B.2 C.5 D.7
-
科目: 来源: 题型:
查看答案和解析>>【题目】(1)如图(1),在△ABC,AB=AC,O为△ABC内一点,且OB=OC,求证:直线AO垂直平分BC.以下是小明的证题思路,请补全框图中的分析过程.

(2)如图(2),在△ABC中,AB=AC,点D、E分别在AB、AC上,且BD=CE.请你只用无刻度的直尺画出BC边的垂直平分线(不写画法,保留画图痕迹).
(3)如图(3),在五边形ABCDE中,AB=AE,BC=DE,∠B=∠E,请你只用无刻度的直尺画出CD边的垂直平分线,并说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】我们规定:函数y=
(a、b、k是常数,k≠ab)叫奇特函数.当a=b=0时,奇特函数y=
就是反比例函数y=
(k是常数,k≠0).(1)如果某一矩形两边长分别是2和3,当它们分别增加x和y后,得到新矩形的面积为8.求y与x之间的函数表达式,并判断它是否为奇特函数;
(2)如图,在平面直角坐标系xOy中,矩形OABC的顶点A、C坐标分别为(6,0)、(0,3),点D是OA中点,连接OB、CD交于E,若奇特函数y=
的图象经过点B、E,求该奇特函数的表达式;
(3)把反比例函数y=
的图象向右平移4个单位,再向上平移 个单位就可得到(2)中得到的奇特函数的图象;(4)在(2)的条件下,过线段BE中点M的一条直线l与这个奇特函数图象交于P,Q两点(P在Q右侧),如果以B、E、P、Q为顶点组成的四边形面积为16,请直接写出点P的坐标.
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列语句中正确的个数为______.
(1)延长射线OA到点B;
(2)直线AB比射线CD长;
(3)线段AB就是A、B两点间的距离;
(4)角的大小与角两边的长度无关.
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列说法不正确的是()
A. 有两组对边分别平行的四边形是平行四边形
B. 平行四边形的对角线互相平分
C. 平行四边形的对边平行且相等
D. 平行四边形的对角互补,邻角相等
相关试题