【题目】已知,如图,△ABC的三条边BC=
,CA=
,AB=
,D为△ABC内一点,且∠ADB=∠BDC=∠CDA=120°,DA=
,DB=
,DC=
.
(1)若∠CDB=18°,则∠BCD= °;
(2)将△ACD绕点A顺时针方向旋转90°到
,画出
,若∠CAD=20°,求
度数;
(3)试画出符合下列条件的正三角形:M为正三角形内的一点,M到正三角形三个顶点的距离分别为
、
、
,且正三角形的边长为
+
+
,并给予证明.
![]()
参考答案:
【答案】(1)42;
(2)画图见解析,
度数是70°;
(3)画图见解析,证明见解析
【解析】(本小题满分14分)
解:(1)42;……………………………………………………………………1分
(2)画图如下(如图5).………………………………………………………3分
∵∠DA
=90°,∠CAD=20°,
∴∠CA
=∠DA
-∠CAD=90°-20°=70°;…………5分
![]()
(3)画图如下:将△BDC绕点B按逆时针方向旋转60°…………………2分
到△BEF的位置(如图6).
连结DE,CF,这样可知△BDE和△BCF均为等边三角形,
从而DE=
,CF=
.
∵∠ADB=120°,∠BDE=60°,即∠ADE=180°,
则A、D、E三点共线(即该三点在同一条直线上).……………………………3分
同理,∵∠BEF=∠BDC=120°,∠BED=60°,
即∠DEF=180°,则D、E、F三点共线,
∴A、D、E、F四点均在一条直线上.…………………………………………4分
∵EF=DC=
,∴线段AF=
+
+
.
以线段AF为边在点B一侧作等边△AFG(图6),……………………………5分
则△AFG即为符合条件的等边三角形,其中的点B即为点M.…………………6分
正三角形的边长为
+
+
已证,BA=
,BF=BC=
,
下面再证BG=
.
∵∠CFB=∠AFG=60°,
即∠1+∠EFB=∠2+∠EFB=60°,∴∠1=∠2.
在△AFC和△GFB中,∵FA=FG,∠1=∠2,FC=FB,
∴△AFC≌△GFB(SAS),
∴AC=GB,即BG=CA=
.
从而点B(M)到等边△AFG三个顶点的距离分别为
、
、
,
且其边长为
+
+
.………………………………………………………………8分
[注:把△ADB绕点A按逆时针方向旋转60°,
把△CDA绕点C按逆时针方向旋转60°,
把△ADC绕点A按顺时针方向旋转60°,
把△BCD绕点C按顺时针方向旋转60°等
均可证得,方法类似]
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列下列命题是真命题的是( )
A. 过一点有且只有一条直线与已知直线垂直
B. 相等的两个角一定是对顶角
C. 将一根细木条固定在墙上,只需要一根钉子
D. 同角的余角相等
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知,如图,E、F分别为矩形ABCD的边AD和BC上的点,AE=CF.求证:BE=DF.

-
科目: 来源: 题型:
查看答案和解析>>【题目】下列命题中,真命题是( )
A. 平行四边形的对角线相等 B. 矩形的对角线平分对角
C. 菱形的对角线互相平分 D. 梯形的对角线互相垂直
-
科目: 来源: 题型:
查看答案和解析>>【题目】在一个纸盒里装有四张除数字以外完全相同卡片,四张卡片上的数字分别为1,2,3,4.先从纸盒里随机取出一张,记下数字为
,再从剩下的三张中随机取出一张,记下数字为
,这样确定了点P的坐标(
,
).(1)请你运用画树状图或列表的方法,写出点P所有可能的坐标;
(2)求点P(
,
)在函数
=-
+4图象上的概率. -
科目: 来源: 题型:
查看答案和解析>>【题目】图1是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图2的形状拼成一个正方形.
(1)请写出图2中阴影部分的面积;
(2)观察图2你能写出下列三个代数式之间的等量关系吗?
代数式:(m+n)2, (m﹣n)2, mn;
(3)根据(2)中的等量关系,解决如下问题:若a+b=7,ab=5,求(a﹣b)2的值.

-
科目: 来源: 题型:
查看答案和解析>>【题目】解方程组:

相关试题