【题目】如图(1),将两块直角三角尺的直角顶点C叠放在一起,![]()
(1)若∠DCE=25°,∠ACB=?;若∠ACB=150°,则∠DCE=?;
(2)猜想∠ACB与∠DCE的大小有何特殊关系,并说明理由;
(3)如图(2),若是两个同样的直角三角尺60°锐角的顶点A重合在一起,则∠DAB与∠CAE的大小又有何关系,请说明理由.
参考答案:
【答案】
(1)
【解答】∵∠ECB=90°,∠DCE=25°
∴∠DCB=90°﹣25°=65°
∵∠ACD=90°
∴∠ACB=∠ACD+∠DCB=155°.
∵∠ACB=150°,∠ACD=90°
∴∠DCB=150°﹣90°=60°
∵∠ECB=90°
∴∠DCE=90°﹣60°=30°.
故答案为:155°,30°
(2)
【解答】猜想得:∠ACB+∠DCE=180°(或∠ACB与∠DCE互补)
理由:∵∠ECB=90°,∠ACD=90°
∴∠ACB=∠ACD+∠DCB=90°+∠DCB
∠DCE=∠ECB﹣∠DCB=90°﹣∠DCB
∴∠ACB+∠DCE=180°
(3)
【解答】∠DAB+∠CAE=120°
理由如下:
∵∠DAB=∠DAE+∠CAE+∠CAB
故∠DAB+∠CAE=∠DAE+∠CAE+∠CAB+∠CAE=∠DAC+∠BAE=120°.
【解析】(1)本题已知两块直角三角尺实际就是已知三角板的各个角的度数,根据角的和差就可以求出∠ACB,∠DCE的度数;(2)根据前个小问题的结论猜想∠ACB与∠DCE的大小关系,结合前问的解决思路得出证明.(3)根据(1)(2)解决思路确定∠DAB与∠CAE的大小并证明.
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列各式化简正确的是( )
A.a﹣(2a﹣b+c)=﹣a﹣b+c
B.(a+b)﹣(﹣b+c)=a+2b+c
C.3a﹣[5b﹣(2c﹣a)]=2a﹣5b+2c
D.a﹣(b+c)﹣d=a﹣b+c﹣d -
科目: 来源: 题型:
查看答案和解析>>【题目】问题1:在数学课本中我们研究过这样一道题目:如图1,∠ACB=90°,AC=BC,BE⊥MN,AD⊥MN,垂足分别为E、D.图中哪条线段与AD相等?并说明理由. 问题2:试问在这种情况下线段DE、AD、BE具有怎样的等量关系?请写出来,不需要说明理由.
问题3:当直线CE绕点C旋转到图2中直线MN的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系,并说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线AB、CD、EF相交于点O .

(1)写出∠COE的邻补角;
(2)分别写出∠COE和∠BOE的对顶角;
(3)如果∠BOD=60°,∠BOF=90°,求∠AOF和∠FOC的度数. -
科目: 来源: 题型:
查看答案和解析>>【题目】某学校是乒乓球体育传统项目学校,为进一步推动该项目的开展,学校准备到体育用品店购买直拍球拍和横拍球拍若干副,并且每买一副球拍必须要买10个乒乓球,乒乓球的单价为2元/个,若购买20副直拍球拍和15副横拍球拍花费9000元;购买10副横拍球拍比购买5副直拍球拍多花费1600元.
(1)求两种球拍每副各多少元?
(2)若学校购买两种球拍共40副,且直拍球拍的数量不多于横拍球拍数量的3倍,请你给出一种费用最少的方案,并求出该方案所需费用.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知平行四边形ABCD中,∠B=4 ∠A,则∠C= ---------------------------( )
A. 18° B. 72° C. 36° D. 144°
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,BC=5,∠A=80°,∠B=70°,把△ABC沿RS的方向平移到△DEF的位置,若CF=4,则下列结论中错误的是( )

A.BE=4
B.∠F=30°
C.AB∥DE
D.DF=5
相关试题