【题目】如图,二次函数y=﹣x2+3x+m的图象与x轴的一个交点为B(4,0),另一个交点为A,且与y轴相交于C点![]()
(1)求m的值及C点坐标;
(2)在直线BC上方的抛物线上是否存在一点M,使得它与B,C两点构成的三角形面积最大,若存在,求出此时M点坐标;若不存在,请简要说明理由
(3)P为抛物线上一点,它关于直线BC的对称点为Q
①当四边形PBQC为菱形时,求点P的坐标;
②点P的横坐标为t(0<t<4),当t为何值时,四边形PBQC的面积最大,请说明理由.
参考答案:
【答案】
(1)
解:将B(4,0)代入y=﹣x2+3x+m,
解得,m=4,
∴二次函数解析式为y=﹣x2+3x+4,
令x=0,得y=4,
∴C(0,4),
(2)
解:存在,
理由:∵B(4,0),C(0,4),
∴直线BC解析式为y=﹣x+4,
当直线BC向上平移b单位后和抛物线只有一个公共点时,△MBC面积最大,
∴
,
∴x2﹣4x+b=0,
∴△=14﹣4b=0,
∴b=4,
∴
,
∴M(2,6)
(3)
解:①如图,
![]()
∵点P在抛物线上,
∴设P(m,﹣m2+3m+4),
当四边形PBQC是菱形时,点P在线段BC的垂直平分线上,
∵B(4,0),C(0,4)
∴线段BC的垂直平分线的解析式为y=x,
∴m=﹣m2+3m+4,
∴m=1±
,
∴P(1+
,1+
)或P(1﹣
,1﹣
),
②如图,
![]()
设点P(t,﹣t2+3t+4),
过点P作y轴的平行线l,过点C作l的垂线,
∵点D在直线BC上,
∴D(t,﹣t+4),
∵PD=﹣t2+3t+4﹣(﹣t+4)=﹣t2+4t,
BE+CF=4,
∴S四边形PBQC=2S△PDC=2(S△PCD+S△BD)=2(
PD×CF+
PD×BE)=4PD=﹣4t2+16t,
∵0<t<4,
∴当t=2时,S四边形PBQC最大=16
【解析】(1)用待定系数法求出抛物线解析式;(2)先判断出面积最大时,平移直线BC的直线和抛物线只有一个交点,从而求出点M坐标;(3)①先判断出四边形PBQC时菱形时,点P是线段BC的垂直平分线,利用该特殊性建立方程求解;②先求出四边形PBCQ的面积与t的函数关系式,从而确定出它的最大值.此题是二次函数综合题,主要考查了待定系数法,极值的确定,对称性,面积的确定,解本题的关键是确定出△MBC面积最大时,点P的坐标.
-
科目: 来源: 题型:
查看答案和解析>>【题目】 如图,小明购买一种笔记本所付款金额y(元)与购买量x(本)之间的函数图象由线段OB和射线BE组成,则一次购买8个笔记本比分8次购买每次购买1个可节省元.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知⊙O1和⊙O2的半径分别为m、n,且m、n满足
+(n﹣2)2=0,圆心距O1O2=
,则两圆的位置关系为 . -
科目: 来源: 题型:
查看答案和解析>>【题目】(操作发现)
(1)如图1,△ABC为等边三角形,先将三角板中的60°角与∠ACB重合,再将三角板绕点C按顺时针方向旋转(旋转角大于0°且小于30°),旋转后三角板的一直角边与AB交于点D,在三角板斜边上取一点F,使CF=CD,线段AB上取点E,使∠DCE=30°,连接AF,EF.
①求∠EAF的度数;
②DE与EF相等吗?请说明理由;

(类比探究)
(2)如图2,△ABC为等腰直角三角形,∠ACB=90°,先将三角板的90°角与∠ACB重合,再将三角板绕点C按顺时针方向旋转(旋转角大于0°且小于45°),旋转后三角板的一直角边与AB交于点D,在三角板另一直角边上取一点F,使CF=CD,线段AB上取点E,使∠DCE=45°,连接AF,EF.
①∠EAF= ;
②当AE=1,ED=2时,求DB的长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图在△ABC中,BO,CO分别平分∠ABC,∠ACB,交于O,CE为外角∠ACD的平分线,BO的延长线交CE于点E,记∠BAC=∠1,∠BEC=∠2,则以下结论①∠1=2∠2,②∠BOC=3∠2,③∠BOC=90°+∠1,④∠BOC=90°+∠2正确的是( )

A. ①②③ B. ①③④ C. ①④ D. ①②④
-
科目: 来源: 题型:
查看答案和解析>>【题目】求两个正整数的最大公约数是常见的数学问题,中国古代数学专著《九章算术》中便记载了求两个正整数最大公约数的一种方法﹣﹣更相减损术,术曰:“可半者半之,不可半者,副置分母、子之数,以少成多,更相减损,求其等也.以等数约之”,意思是说,要求两个正整数的最大公约数,先用较大的数减去较小的数,得到差,然后用减数与差中的较大数减去较小数,以此类推,当减数与差相等时,此时的差(或减数)即为这两个正整数的最大公约数.
例如:求91与56的最大公约数
解:
请用以上方法解决下列问题:
(1)求108与45的最大公约数;
(2)求三个数78、104、143的最大公约数. -
科目: 来源: 题型:
查看答案和解析>>【题目】我州某养殖场计划购买甲、乙两种鱼苗600条,甲种鱼苗每条16元,乙种鱼苗每条20元,相关资料表明:甲、乙两种鱼苗的成活率为80%,90%
(1)若购买这两种鱼苗共用去11000元,则甲、乙两种鱼苗各购买多少条?
(2)若要使这批鱼苗的总成活率不低于85%,则乙种鱼苗至少购买多少条?
(3)在(2)的条件下,应如何选购鱼苗,使购买鱼苗的总费用最低?最低费用是多少?
相关试题