【题目】 如图,小明购买一种笔记本所付款金额y(元)与购买量x(本)之间的函数图象由线段OB和射线BE组成,则一次购买8个笔记本比分8次购买每次购买1个可节省元. ![]()
参考答案:
【答案】4
【解析】解:由线段OB的图象可知,当0<x<时,y=5x,
1千克苹果的价钱为:y=5,
设射线EB的解析式为y=kx+b(x≥2),
把(4,20),(10,44)代入得
,
解得:
,
∴射线EB的解析式为y=4x+4,
当x=8时,y=4×8+4=36,
5×8﹣36=4(元),
故答案为:4.
根据函数图象,分别求出线段OB和射线EB的函数解析式,然后可求出一次购买8个笔记本的价钱和分8次购买每次购买1个的花费,进而可得答案.本题考查了一次函数的应用,解决本题的关键是掌握待定系数法求一次函数解析式.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,AD⊥BC于D,BD=AD,DG=DC,E,F分别是BG,AC的中点.
(1)求证:DE=DF,DE⊥DF;
(2)连接EF,若AC=2,求EF的长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,矩形ABCD绕点B逆时针旋转30°后得到矩形A1BC1D1 , C1D1与AD交于点M,延长DA交A1D1于F,若AB=1,BC=
,则AF的长度为( ) 
A.2﹣
B.
C.
D.
﹣1 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点B、F、C、E在一条直线上,AB∥ED,AC∥FD,那么添加下列一个条件后,仍无法判定△ABC≌△DEF的是( )

A.AB=DE
B.AC=DF
C.∠A=∠D
D.BF=EC -
科目: 来源: 题型:
查看答案和解析>>【题目】已知⊙O1和⊙O2的半径分别为m、n,且m、n满足
+(n﹣2)2=0,圆心距O1O2=
,则两圆的位置关系为 . -
科目: 来源: 题型:
查看答案和解析>>【题目】(操作发现)
(1)如图1,△ABC为等边三角形,先将三角板中的60°角与∠ACB重合,再将三角板绕点C按顺时针方向旋转(旋转角大于0°且小于30°),旋转后三角板的一直角边与AB交于点D,在三角板斜边上取一点F,使CF=CD,线段AB上取点E,使∠DCE=30°,连接AF,EF.
①求∠EAF的度数;
②DE与EF相等吗?请说明理由;

(类比探究)
(2)如图2,△ABC为等腰直角三角形,∠ACB=90°,先将三角板的90°角与∠ACB重合,再将三角板绕点C按顺时针方向旋转(旋转角大于0°且小于45°),旋转后三角板的一直角边与AB交于点D,在三角板另一直角边上取一点F,使CF=CD,线段AB上取点E,使∠DCE=45°,连接AF,EF.
①∠EAF= ;
②当AE=1,ED=2时,求DB的长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,二次函数y=﹣x2+3x+m的图象与x轴的一个交点为B(4,0),另一个交点为A,且与y轴相交于C点

(1)求m的值及C点坐标;
(2)在直线BC上方的抛物线上是否存在一点M,使得它与B,C两点构成的三角形面积最大,若存在,求出此时M点坐标;若不存在,请简要说明理由
(3)P为抛物线上一点,它关于直线BC的对称点为Q
①当四边形PBQC为菱形时,求点P的坐标;
②点P的横坐标为t(0<t<4),当t为何值时,四边形PBQC的面积最大,请说明理由.
相关试题