【题目】如图,抛物线y=ax2+bx(a≠0) 交x轴正半轴于点A,直线y=2x 经过抛物线的顶点M.已知该抛物线的对称轴为直线x=2,交x轴于点B.
![]()
(1)求a,b的值;
(2)P是第一象限内抛物线上的一点,且在对称轴的右侧,连接OP,BP.设点P的横坐标为m ,△OBP的面积为S,
.求K关于m 的函数表达式及K的范围.
参考答案:
【答案】(1)a=-1;b=4;(2)K=-m+4,0<K<2
【解析】
分析: (1)将x=2代入直线y=2x得出对应的函数值,从而得出M点的坐标,将M点的坐标代入抛物线 y = a x 2 + b x ,再根据抛物线的对称轴为直线 x = 2,得出关于a,b的二元一次方程组,求解得出a,b的值;
(2)如图,过点P作PH⊥x轴于点H,根据P点的横坐标及点P在抛物线上从而得出PH的值,根据B点的坐标得出OB的长,从而根据三角形的面积公式得出S=-m2+4m,再根据
,得出k=-m+4,由题意得A(4,0),M(2,4),根据P是第一象限内抛物线上的一点,且在对称轴的右侧,从而得出2<m<4,根据一次函数的性质知K随着m的增大而减小,从而得出答案0<K<2.
详解:
(1)解 ;将x=2代入y=2x得y=4
∴M(2,4)
由题意得
,
∴
.
(2)解 :如图,过点P作PH⊥x轴于点H
![]()
∵点P的横坐标为m,抛物线的函数表达式为y=-x2+4x
∴PH=-m2+4m
∵B(2,0),
∴OB=2
∴S=
OB·PH=
×2×(-m2+4m)=-m2+4m
∴K=
=-m+4
由题意得A(4,0)
∵M(2,4)
∴2<m<4
∵K随着m的增大而减小,所以0<K<2
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图是抛物线形拱桥,当拱顶离水面2m时,水面宽4m,则水面下降1m时,水面宽度增加_____m.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知二次函数y=ax2+bx+c的图象如图所示,有以下结论:①a+b+c<0;②a﹣b+c>1;③abc>0;④4a﹣2b+c<0;⑤c﹣a>1.其中所有正确结论的序号是_____.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:抛物线y=﹣x2﹣6x+21.求:
(1)直接写出抛物线y=﹣x2﹣6x+21的顶点坐标;
(2)当x>2时,求y的取值范围.
-
科目: 来源: 题型:
查看答案和解析>>【题目】甲、乙两同学的家与学校的距离均为3200米.甲同学先步行200米,然后乘公交车去学校,乙同学骑自行车去学校.已知甲步行速度是乙骑自行车速度的
,公交车的速度是乙骑自行车速度的3倍.甲、乙两同学同时从家出发去学校,结果甲同学比乙同学早到8分钟.(1)求乙骑自行车的速度;
(2)当甲到达学校时,乙同学离学校还有多远?
-
科目: 来源: 题型:
查看答案和解析>>【题目】安徽某水产养殖户去年利用“稻虾混养”使每千克小龙虾养殖成本降为6元,在整个销售旺季的80天里,销售单价P(元/千克)与时间第t(天)之间的函数关系为:P=
,日销售量y(千克)与时间第t(天)之间的函数关系如图所示.(1)求日销售y与时间t的函数关系式?
(2)设日销售利润为W(元),求W与t之间的函数表达式;
(3)日销售利润W哪一天最大?最大利润是多少?

-
科目: 来源: 题型:
查看答案和解析>>【题目】某商家销售一款商品,进价每件80元,售价每件145元,每天销售40件,每销售一件需支付给商场管理费5元,未来一个月
按30天计算
,这款商品将开展“每天降价1元”的促销活动,即从第一天开始每天的单价均比前一天降低1元,通过市场调查发现,该商品单价每降1元,每天销售量增加2件,设第x天
且x为整数
的销售量为y件.
直接写出y与x的函数关系式;
设第x天的利润为w元,试求出w与x之间的函数关系式,并求出哪一天的利润最大?最大利润是多少元?
相关试题