【题目】阅读下面的材料,回答问题:
解方程x4-5x2+4=0,这是一个一元四次方程,根据该方程的特点,它的解法通常是:
设x2=y,那么x4=y2,于是原方程可变为y2-5y+4=0 ①,解得y1=1,y2=4.
当y=1时,x2=1,∴x=±1;当y=4时,x2=4,∴x=±2;
∴原方程有四个根:x1=1,x2=-1,x3=2,x4=-2.
(1)在由原方程得到方程①的过程中,利用 法(把未知数x换为 y)达到降次的目的.
(2)解方程:(x2+3x)2+5(x2+3x)-6=0.
参考答案:
【答案】(1)转化;(2)x1=
,x2=
.
【解析】试题分析:(1)本题主要是利用换元法降次来达到把一元四次方程转化为一元二次方程,来求解,然后再解这个一元二次方程.
(2)利用题中给出的方法先把x2+x当成一个整体y来计算,求出y的值,再解一元二次方程.
试题解析:解:(1)换元
(2)设x2+3x=y,原方程可化为y2+5y-6=0,
解得y1=1,y2=-6.
由x2+3x=1,得x1=
,x2=
.
由x2+3x=-6,得方程x2+3x+6=0,
△=9-4×6=-15<0,此方程无解.
所以原方程的解为x1=
,x2=
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】小王在静水中划船每小时速度12Km,今往返于某河,逆流时用了10h,顺流时用了6h,求此河的水流速度
-
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系xOy中,给出如下定义:
对于⊙C及⊙C外一点P,M,N是⊙C上两点,当∠MPN最大,称∠MPN为点P关于⊙C的“视角”.直线l与⊙C相离,点Q在直线l上运动,当点Q关于⊙C的“视角”最大时,则称这个最大的“视角”为直线l关于⊙C的“视角”.
(1)如图,⊙O的半径为1,
①已知点A(1,1),直接写出点A关于⊙O的“视角”;已知直线y = 2,直接写出直线y = 2关于⊙O的“视角”;
②若点B关于⊙O的“视角”为60°,直接写出一个符合条件的B点坐标;
(2)⊙C的半径为1,
①C的坐标为(1,2),直线l: y=kx + b(k > 0)经过点D(
,0),若直线l关于⊙C的“视角”为60°,求k的值;②圆心C在x轴正半轴上运动,若直线y =
x +
关于⊙C的“视角”大于120°,直接写出圆心C的横坐标xC的取值范围.
-
科目: 来源: 题型:
查看答案和解析>>【题目】钟表在3点30分时,它的时针和分针所成的角是.
-
科目: 来源: 题型:
查看答案和解析>>【题目】今年,6月12日为端午节,在端午节前夕三位同学到某超市调研一种进价为2元的粽子的售销情况,请跟据小丽提供的信息,解答小华和小明提出的问题。
小丽:每个定价3元,每天能卖出500个,而且,这种粽子每上涨0.1元,其售销量 将减小10个。
小华:照你所说,如果实现每天不低于800元的售销利润,那么定价应在什么范围 内?莫忘了物价局规定售价不能超过进价的240%哟。
小明:该如何定价,才会使每天的利润最大?最大利润是多少?
(1)请回答小华的问题。
(2)请回答小明的问题。
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线y=2x+2与y轴交于A点,与反比例函数y=
(x>0)的图象交于点M,过M作MH⊥x轴于点H,且tan∠AHO=2.(1)求k的值;
(2)点N(a,1)是反比例函数y=
(x>0)图象上的点,在x轴上是否存在点P,使得PM+PN最小?若存在,求出点P的坐标;若不存在,请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列语句中正确的是( )
A.长度相等的两条弧是等弧
B.平分弦的直径垂直于弦
C.相等的圆心角所对的弧相等
D.经过圆心的每一条直线都是圆的对称轴
相关试题