【题目】小王在静水中划船每小时速度12Km,今往返于某河,逆流时用了10h,顺流时用了6h,求此河的水流速度
参考答案:
【答案】3
【解析】解:设水流的速度为每小时x千米,依题意有:
6(x+12)=10(12﹣x),解得x=3.
故水流的长速度是每小时3千米.所以答案是:3.
-
科目: 来源: 题型:
查看答案和解析>>【题目】长度为9、12、15、36、39的五根木棍,从中取三根依次搭成三角形,最多可搭成直角三角形的个数是( )
A. 1 B. 2 C. 3 D. 4
-
科目: 来源: 题型:
查看答案和解析>>【题目】某地下车库出口处安装了“两段式栏杆”,如图1所示,点A是栏杆转动的支点,点E是栏杆两段的联结点.当车辆经过时,栏杆AEF最多只能升起到如图2所示的位置,其示意图如图3所示(栏杆宽度忽略不计),其中AB⊥BC, EF∥BC,∠AEF=143°,AB=AE=1.3米,那么适合该地下车库的车辆限高标志牌为多少米?(结果精确到0.1.参考数据:sin 37° ≈ 0.60,cos 37° ≈ 0.80,tan 37° ≈ 0.75)

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,以△ABC的边AB为直径作⊙O,与BC交于点D,点E是弧BD的中点,连接AE交BC于点F,∠ACB=2∠BAE.
(1)求证:AC是⊙O的切线;
(2)若
,BD=5,求BF的长.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系xOy中,给出如下定义:
对于⊙C及⊙C外一点P,M,N是⊙C上两点,当∠MPN最大,称∠MPN为点P关于⊙C的“视角”.直线l与⊙C相离,点Q在直线l上运动,当点Q关于⊙C的“视角”最大时,则称这个最大的“视角”为直线l关于⊙C的“视角”.
(1)如图,⊙O的半径为1,
①已知点A(1,1),直接写出点A关于⊙O的“视角”;已知直线y = 2,直接写出直线y = 2关于⊙O的“视角”;
②若点B关于⊙O的“视角”为60°,直接写出一个符合条件的B点坐标;
(2)⊙C的半径为1,
①C的坐标为(1,2),直线l: y=kx + b(k > 0)经过点D(
,0),若直线l关于⊙C的“视角”为60°,求k的值;②圆心C在x轴正半轴上运动,若直线y =
x +
关于⊙C的“视角”大于120°,直接写出圆心C的横坐标xC的取值范围.
-
科目: 来源: 题型:
查看答案和解析>>【题目】钟表在3点30分时,它的时针和分针所成的角是.
-
科目: 来源: 题型:
查看答案和解析>>【题目】阅读下面的材料,回答问题:
解方程x4-5x2+4=0,这是一个一元四次方程,根据该方程的特点,它的解法通常是:
设x2=y,那么x4=y2,于是原方程可变为y2-5y+4=0 ①,解得y1=1,y2=4.
当y=1时,x2=1,∴x=±1;当y=4时,x2=4,∴x=±2;
∴原方程有四个根:x1=1,x2=-1,x3=2,x4=-2.
(1)在由原方程得到方程①的过程中,利用 法(把未知数x换为 y)达到降次的目的.
(2)解方程:(x2+3x)2+5(x2+3x)-6=0.
相关试题