【题目】小明、小亮、小刚、小颖一起研究一道数学题.如图,已知EF⊥AB,CD⊥AB.
小明说:“如果还知道∠CDG=∠BFE,那么能得到∠AGD=∠ACB.”
小亮说:“把小明的已知和结论倒过来,即由∠AGD=∠ACB,可得到∠CDG=∠BFE.”
小刚说:“∠AGD一定大于∠BFE.”
小颖说:“如果连结GF,那么GF一定平行于AB.”
他们四人中,有________个人的说法是正确的.( )
![]()
A. 1 B. 2 C. 3 D. 4
参考答案:
【答案】B
【解析】
根据“垂直的定义、平行线的判定与性质”结合“已知条件”进行分析判断即可.
(1)∵EF⊥AB,CD⊥AB,
∴∠BEF=∠BDC=90°,
∴CD∥EF,
∴∠BFE=∠BCD,
∵∠CDG=∠BFE,
∴∠CDG=∠BCD,
∴DG∥BC,
∴∠AGD=∠ACB,即小明的说法正确;
(2)∵∠AGD=∠ACB,
∴DG∥BC,
∴∠CDG=∠BFE,
∵EF⊥AB,CD⊥AB,
∴∠BEF=∠BDC=90°,
∴CD∥EF,
∴∠BFE=∠BCD,
∴∠CDG=∠BFE,即小亮的说法正确;
(3)∵EF⊥AB,CD⊥AB,
∴∠BEF=∠BDC=90°,
∴CD∥EF,
∴∠BFE=∠BCD,
∵∠ACB>∠BCD,
∴∠ACB>∠BFE,
但由于不知道此时DG与BC的位置关系,不能确定∠AGD与∠ACB的大小关系,
∴∠AGD一定大于∠BFE的说法不一定成立,即小刚的说法错误;
(4)如下图,连接GF,
因为由已知条件不能确定点F、G在BC和AC上的位置,
所以不能确定FG与AB的位置关系,即小颖的说法错误.
![]()
综上所述,四人的说法中,有二人的说法是正确的.
故选B.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线,交CE的延长线于点F,且AF=BD,连接BF.
(1)求证:BD=CD;(2)如果AB=AC,试判断四边形AFBD的形状,并证明你的结论.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在⊙O中,AB是直径,点D是⊙O上一点且∠BOD=60°,过点D作⊙O的切线CD交AB的延长线于点C,E为
的中点,连接DE,EB. 
(1)求证:四边形BCDE是平行四边形;
(2)已知图中阴影部分面积为6π,求⊙O的半径r. -
科目: 来源: 题型:
查看答案和解析>>【题目】下面的四个图案中,既可用旋转来分析整个图案的形成过程,又可用轴对称来分析整个图案的形成过程的图案有( )

A.4个 B.3个 C.2个 D.1个
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知点B(1,3),C(1,0),直线y=x+k经过点B,且与x轴交于点A,将△ABC沿直线AB折叠得到△ABD.

(1)填空:A点坐标为( , ),D点坐标为( , );
(2)若抛物线y=
x2+bx+c经过C,D两点,求抛物线的解析式;
(3)将(2)中的抛物线沿y轴向上平移,设平移后所得抛物线与y轴交点为E,点M是平移后的抛物线与直线AB的公共点,在抛物线平移过程中是否存在某一位置使得直线EM∥x轴.若存在,此时抛物线向上平移了几个单位?若不存在,请说明理由.
(提示:抛物线y=ax2+bx+c(a≠0)的对称轴是x=﹣
,顶点坐标是(﹣
,
) -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知∠BAP与∠APD互补,∠1=∠2,试说明:∠E=∠F.请在下面的括号中填上理由.

解:∵∠BAP与∠APD互补( ),
∴AB∥CD( ),
∴∠BAP=∠APC( ).
又∵∠1=∠2( ),
∴∠BAP-∠1=∠APC-∠2( ),
即∠3=∠4,
∴AE∥PF( ),
∴∠E=∠F( ).
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线AB和CD相交于点O,∠COE=90°,OD平分∠BOF,∠BOE=50°.
(1)求∠AOC的度数;
(2)求∠EOF的度数.

相关试题