【题目】如图,△ABC中,AB=AC,
![]()
(1)请你利用直尺和圆规完成如下操作:
①作△ABC的角平分线AD;
②作边AB的垂直平分线EF,EF与AD相交于点P;
③连接PB,PC.
请你观察图形解答下列问题:
(2)线段PA,PB,PC之间的数量关系是 ;请说明理由.
(3)若∠ABC=70°,求∠BPC的度数.
参考答案:
【答案】(1)见解析;(2)PA=PB=PC,理由见解析;(3)80°.
【解析】
(1)利用基本作图作角平分线AD和AB的垂直平分线,它们相交于P点;
(2)根据线段的垂直平分线的性质可得:PA=PB=PC;
(3)根据等腰三角形的性质得:∠ABC=∠ACB=70°,由三角形的内角和得:∠BAC=180°-2×70°=40°,由角平分线定义得:∠BAD=∠CAD=20°,最后利用三角形外角的性质可得结论.
解:(1)如图,AD、EF 、点P为所作;
![]()
(2)PA=PB=PC,理由:
∵AB=AC,AD平分∠BAC,
∴AD是BC的垂直平分线,
∴PB=PC,
∵EP是AB的垂直平分线,
∴PA=PB,
∴PA=PB=PC;
故答案为:PA=PB=PC;
(3)∵AB=AC,
∴∠ABC=∠ACB=70°,
∴∠BAC=180°-2×70°=40°,
∵AM平分∠BAC,
∴∠BAD=∠CAD=20°,
∵PA=PB=PC,
∴∠ABP=∠BAP=∠ACP=20°,
∴∠BPC=∠ABP+∠BAC+∠ACP=20°+40°+20°=80°.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知等边三角形△ABC边长为a,等腰三角形△BDC中,∠BDC=120,∠MDN=60,角的两边分别交AB,AC于点M,N,连结MN.则△AMN的周长为( )

A.aB.2aC.3aD.4a
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC中,AD平分∠BAC,EG⊥AD,分别交AB,AD,AC,BC的延长线于E,H,F,G

已知四个式子:①∠1=
(∠2+∠3);②∠1=
(∠3-∠2);③∠4=
(∠3-∠2);④∠4=
∠1.其中正确的式子有______.(填写序号) -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AO平分∠BAC,AO⊥BC,DE⊥BC,GH⊥BC,垂足分别为O、E、H,且DO∥AC,∠B=43°,则图中角的度数为47°的角的个数是( )

A. 5 B. 6 C. 7 D. 8
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,过点B,D分别向线段AE作垂线段BQ和DF,点Q和F是垂足,连结AB,DE,BD,BD交AE于点C,且AB=DE,AF=EQ.

(1)求证:△ABQ≌△EDF;
(2)求证:C是BD的中点.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC中,∠C=Rt∠,AC=8cm,BC=6cm,若动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒2cm,设运动的时间为t秒。

(1)当t为何值时,CP把△ABC的周长分成相等的两部分。
(2)当t为何值时,CP把△ABC的面积分成相等的两部分,并求出此时CP的长;
(3)当t为何值时,△BCP为等腰三角形?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在等腰三角形纸片ABC中,AB=AC=10,BC=12,将此等腰三角形纸片沿底边BC上的高AD剪成两个全等的三角形,用这两个三角形拼成一个平行四边形,则所拼出的所有平行四边形中最长的对角线的长是_____.

相关试题