【题目】如图,在△ABC和△ABD中,∠BAC=∠ABD=90°,点E为AD边上的一点,且AC=AE,连接CE交AB于点G,过点A作AF⊥AD交CE于点F.
(1)求证:△AGE≌△AFC;
(2)若AB=AC,求证:AD=AF+BD.
![]()
参考答案:
【答案】(1)证明见解析;(2)证明见解析.
【解析】
(1)由AF⊥AD,∠CAB=90°,可得∠CAF=∠EAG,由AC=AE,可得∠ACF=∠AEG,根据AAS即可证明结论;
(2)如图,在AD上截取AH=AE,交CE于点M,证明△CAF≌△BAH,从而可得∠ABH=∠ACF,继而可得∠MGB+∠ABH=90°,从而可得∠MHE+∠HEM=90°,再根据∠ACF=∠HEM,∠ABH+∠HBD=90°,可得到∠MHE=∠HBD,从而可得HD=BD,再根据AD=AH+DH,即可求得答案.
(1)∵AF⊥AD,
∴∠FAE=90°,
∵∠CAB=90°,
∴∠CAB-∠FAB=∠FAE-∠FAB,
即∠CAF=∠EAG,
∵AC=AE,
∴∠ACF=∠AEG,
∴△AGE≌△AFC(AAS);
(2)如图,在AD上截取AH=AE,交CE于点M,
又∵∠CAF=∠BAH,AC=BC,
∴△CAF≌△BAH(SAS),
∴∠ABH=∠ACF,
∵∠CGA=∠MGB,∠ACF+∠CGA=90°,
∴∠MGB+∠ABH=90°,
∴∠BMG=90°,
∴∠HME=∠BMG=90°,
∴∠MHE+∠HEM=90°,
又∵∠ACF=∠HEM,∠ABH+∠HBD=90°,
∴∠MHE=∠HBD,
∴HD=BD,
∵AD=AH+DH,
∴AD=AF+BD.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】互联网时代,发达的物流业改变了我们的生活.某快递公司的分发中心、菜鸟驿站、快递员公寓依次分布在同一条直线上,快递员甲、乙分别同时从菜鸟驿站和分发中心出发,甲先骑自行车回到分发中心,将自行车归还分发中心后步行经过菜鸟驿站返回公寓(归还自行车的时间忽略不计),乙先从分发中心步行到菜鸟驿站,步行速度与甲的步行速度相同,到达菜鸟驿站后停下来继续完成剩余工作,随后跑步回公寓,最后两人同时到达公寓.甲、乙两人与公寓的距离y(米)与出发的时间x(分钟)之间的关系如图所示.

(1)甲骑自行车的速度为 米/分,乙跑步的速度为 米/分;
(2)乙在菜鸟驿站停留的时间为 分钟;
(3)甲乙第二次相遇后再经过多少分钟他们相距450米?
-
科目: 来源: 题型:
查看答案和解析>>【题目】为了维护国家主权和海洋权力,海监部门对我国领海实现了常态化巡航管理,如图,正在执行巡航任务的海监船以每小时50海里的速度向正东方航行,在
处测得灯塔
在北偏东
方向上,继续航行1小时到达
处,此时测得灯塔
在北偏东
方向上.(1)求
的度数;(2)已知在灯塔
的周围25海里内有暗礁,问海监船继续向正东方向航行是否安全?
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知关于
的一元二次方程
⑴说明该方程根的情况.
⑵若
(
为整数),且方程有两个整数根,求
的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】随着科技的发展,智能制造逐渐成为一种可能的生产方式.重庆某电子零部件生产商原来采用自动化程度较低的传统生产方式,工厂有熟练工人和新工人共100人,熟练工平均每天能生产30个零件,新工人平均每天能生产20个零件,所有工人刚好用30天完成了一项7.2万个零件的生产任务.
(1)请问该工厂有熟练工,新工人各多少人?(请列二元一次方程组解题)
(2)今年,某自动化技术团队为工厂提供了A、B两种不同型号的机器人,且两种机器人都可以单独完成零件的生产.已知A型机器人的售价为80万元/台,B型机器人的售价为120万元/台.工厂准备采购价值840万元的机器人设备,两种机器人都至少购买一台,若840万元刚好用完,求出所有可能的购买方案.
(3)已知一个零件的毛利润(只扣除了原材料成本)为10元,若选择传统生产方式,熟练工每月基本工资3000元,新工人每月基本工资2000元,在基本工资之上,工厂还需额外支付计件工资5元/件,传统生产方式的设备成本忽略不计.若选择智能制造方式生产,A型机器人每月生产零件1.5万个,B型机器人每月能生产零件2.7万个,1台A型机器人需要8名技术人员操控,一台B型机器人需要12名技术人员操控,技术人员每人工资1万元,实际生产过程中,一台A型机器人平均每月的总成本为6万元(包含所有设备成本和维护成本),一台B型机器人平均每月的总成本为8万元(包含所有设备成本和维护成本).请你比较传统的生产方式和(2)中的所有购买方案对应的智能生产方式,哪种生产方式每月的总利润最大,最大利润为多少万元?(注:每月均按30天计算)
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在Rt△ABC中,∠ACB=90°,AO是△ABC的角平分线.以O为圆心,OC为半径作⊙O.
(1)求证:AB是⊙O的切线.
(2)已知AO交⊙O于点E,延长AO交⊙O于点D,tanD=
,求
的值.(3)(3分)在(2)的条件下,设⊙O的半径为3,求AB的长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:在Rt△ABC中,∠ACB=90°,过点C作CD⊥AB于点D,点E是BC上一点,连接AE交CD于点F.
(1)如图1,若AE平分∠CAB,CP平分∠BCD,求证:FP=EP;
(2)如图2,若CE=CA,过点E作EG⊥CD于点G,点H为AE的中点,连接DH,GH,判断△GDH的形状,并证明.

相关试题