【题目】已知二次函数y=ax2+bx+c的图象如图,则下列叙述正确的是( )
![]()
A. abc<0 B. -3a+c<0
C. b2-4ac≥0 D. 将该函数图象向左平移2个单位后所得到抛物线的解析式为y=ax2+c
参考答案:
【答案】B
【解析】解:A.由开口向下,可得a<0;又由抛物线与y轴交于负半轴,可得c<0,然后由对称轴在y轴右侧,得到b与a异号,则可得b>0,故得abc>0,故本选项错误;
B.根据图知对称轴为直线x=2,即
=2,得b=﹣4a,再根据图象知当x=1时,y=a+b+c=a﹣4a+c=﹣3a+c<0,故本选项正确;
C.由抛物线与x轴有两个交点,可得b2﹣4ac>0,故本选项错误;
D.y=ax2+bx+c=
,∵
=2,∴原式=
,∴向左平移2个单位后所得到抛物线的解析式为
,故本选项错误;
故选B.
-
科目: 来源: 题型:
查看答案和解析>>【题目】(1)在平面直角坐标系中,作出下列各点,A(-3,4), B(-3,-2),O(0,0),并把各点连起来.
(2)画出△ABO先向下平移2个单位,再向右平移4 个单位得到的图形△A1B1o1,并直接写出A1坐标
(3) 直接写出三角形ABO的面积.

-
科目: 来源: 题型:
查看答案和解析>>【题目】(1)如图1已知:∠B=25°,∠BED=80°,∠D=55°.探究AB与CD有怎样的位置关系.
(2)如图2已知AB∥EF,试猜想∠B,∠F,∠BCF之间的关系,写出这种关系,并加以证明.
(3)如图3已知AB∥CD,试猜想∠1,∠2,∠3,∠4,∠5之间的关系,请直接写出这种关系,不用证明.



-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,点A,B的坐标分别为A(-1,0),B(3,0),现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD,CD.
(1)求点C,D的坐标及四边形ABDC的面积S四边形ABDC.(提示:平行四边形的面积=底×高)
(2)在y轴上是否存在一点P,连接PA,PB,使S△PAB=S四边形ABDC?若存在这样一点,求出点P的坐标;若不存在,试说明理由.
(3)点P是线段BD上的一个动点,连接PC,PO,当点P在BD上移动时(不与B,D重合)
的值是否发生变化,若不变请求出该值,若会变请并请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,在矩形ABCD中,动点P从点B出发,沿矩形的边由
运动,设点P运动的路程为x,
的面积为y,把y看作x的函数,函数的图像如图2所示,则
的面积为( )
A. 10 B. 16 C. 18 D. 20
-
科目: 来源: 题型:
查看答案和解析>>【题目】某风景区集体门票的收费标准是30人以内(含30人),每人25元;超过30人,超过部分每人10元.
(1)写出应收门票费
(元)与游览人数
(人)之间的函数关系式;(2)利用(1)中的函数关系式计算,某班54人去该风景区旅游时,为购门票共花了多少元.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,Rt△ACB中,∠ACB=90°,∠ABC的平分线BE和∠BAC的外角平分线AD相交于点P,分别交AC和BC的延长线于E,D.过P作PF⊥AD交AC的延长线于点H,交BC的延长线于点F,连接AF交DH于点G.则下列结论:①∠APB=45°;②PF=PA;③BD﹣AH=AB;④DG=AP+GH.其中正确的是( )

A. ①②③ B. ①②④ C. ②③④ D. ①②③④
相关试题