【题目】2018年5月,某城遭遇暴雨水灾,武警战士乘一冲锋舟从A地逆流而上,前往C地营救受困群众,途经B地时,由所携带的救生艇将B地受困群众运回A地,冲锋舟继续前进,到C地接到群众后立刻返回A地,途中曾与救生艇相遇,冲锋舟和救生艇距A地的距离y(千米)和冲锋舟出发后所用时间x(分)之间的函数图象如图所示,假设群众上下冲锋舟和救生艇的时间忽略不计,水流速度和冲锋舟在静水中的速度不变.
(1)冲锋舟从A地到C地的时间为 分钟,冲锋舟在静水中的速度为 千米/分,水流的速度为 千米/分.
(2)冲锋舟将C地群众安全送到A地后,又立即去接应救生艇,已知救生艇与A地的距离y(千米)和冲锋舟出发后所用时间x(分钟)之间的函数关系式为y=kx+b,若冲锋舟在距离A地
千米处与救生艇第二次相遇,求k、b的值.
![]()
参考答案:
【答案】(1)24,
,
(2)-
,11
【解析】
(1)根据题意和函数图象中的数据,可以解答本题;
(2)根据题意和函数图象中的数据,可以求得k、b的值,本题得以解决.
(1)由图象可得,
冲锋舟从A地到C地的时间为12×(20÷10)=24(分钟),
设冲锋舟在静水中的速度为a千米/分钟,水流的速度为b千米/分钟,
,解得,
,
故答案为:24,
,
;
(2)冲锋舟在距离A地
千米时,冲锋舟所用时间为:
=8(分钟),
∴救生艇与A地的距离y(千米)和冲锋舟出发后所用时间x(分钟)之间的函数关系式为y=kx+b过点(12,10),(52,
),
,
解得,
,
即k、b的值分别是-
,11.
-
科目: 来源: 题型:
查看答案和解析>>【题目】下面说法中错误的有( )
①如果△ABC的三个内角满足∠A=∠C﹣∠B,那么△ABC一定是直角三角形;
②如果一个三角形只有一条高在三角形的内部,那么这个三角形一定是钝角三角形;
③若m>n,则ma2>na2;
④方程3x+2y=9的非负整数解是x=1,y=3;
⑤由三条线段首尾顺次连接所组成的图形叫做三角形.
A.4个B.3个C.2个D.1个
-
科目: 来源: 题型:
查看答案和解析>>【题目】在作二次函数y1=ax2+bx+c与一次函数y2=kx+m的图象时,先列出下表:
x
…
﹣1
0
1
2
3
4
5
…
y1
…
0
﹣3
﹣4
﹣3
0
5
12
…
y2
…
0
2
4
6
8
10
12
…
请你根据表格信息回答下列问题,
(1)二次函数y1=ax2+bx+c的图象与y轴交点坐标为;
(2)当y1>y2时,自变量x的取值范围是;
(3)请写出二次函数y1=ax2+bx+c的三条不同的性质. -
科目: 来源: 题型:
查看答案和解析>>【题目】阅读下列材料解决问题
两个多位数整数,若它们各数位上的数字之和相等,则称这两个多位数互为“调和数”,例如37和82,它们各数位上的数字之和分别为3+7和8+2,显然3+7=8+2=10故37和82互为“调和数”.
(1)下列说法错误的是
A.123和51互为调和数” B.345和513互为“调和数
C.2018和8120互为“调和数” D.两位数
和
互为“调和数”(2)若A、B是两个不等的两位数,A=
,B=
,A和B互为“调和数”,且A与B之和是B与A之差的3倍,求满足条件的两位数A. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在四边形ABCD中,AB=AD,BC=CD,E,F,G,H分别为AB,BC,CD,AD的中点,顺次连接E,G,F,H,求证:四边形EFGH是矩形.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在矩形ABCD中,点O是对角线AC上一点,以OC为半径的⊙O与CD交于点M,且∠BAC=∠DAM.

(1)求证:AM与⊙O相切;
(2)若AM=3DM,BC=2,求⊙O的半径. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知正比例函数y=kx经过点A,点A在第四象限,过点A作AH⊥x轴,垂足为点H,点A的横坐标为3,且△AOH的面积为3.
(1)求正比例函数的解析式;
(2)在x轴上能否找到一点P,使△AOP的面积为5?若存在,求点P的坐标;若不存在,请说明理由.
相关试题