【题目】下图是某汽车行驶的路程![]()
与时间
(分钟)的函数关系图.
![]()
观察图中所提供的信息,解答下列问题:
(1)汽车在前
分钟内的平均速度是 .
(2)汽车在中途停了多长时间?
(3)当
时,求
与
的函数关系式
参考答案:
【答案】(1)
;(2)7分钟;(3)
.
【解析】
(1)根据函数图象中的数据可以求得汽车在前9分钟内的平均速度;
(2)根据函数图象中的数据可以求得汽车在中途停了多长时间;
(3)根据函数图象中的数据可以求得当16≤t≤30时,S与t的函数关系式.
解:(1)由图可得,
汽车在前9分钟内的平均速度是:12÷9=
km/min;
(2)由图可得,
汽车在中途停了:16-9=7min,
即汽车在中途停了7min;
(3)设当16≤t≤30时,S与t的函数关系式是S=at+b,
把(16,12)和(30,40)代入得
,
解得
,
即当16≤t≤30时,S与t的函数关系式是S=2t-20.
-
科目: 来源: 题型:
查看答案和解析>>【题目】下图的转盘被划分成六个相同大小的扇形,并分别标上1,2,3,4,5,6这六个数字,指针停在每个扇形的可能性相等。四位同学各自发表了下述见解:
甲:如果指针前三次都停在了3号扇形,下次就一定不会停在3号扇形;
乙:只要指针连续转六次,一定会有一次停在6号扇形;
丙:指针停在奇数号扇形的概率与停在偶数号扇形的概率相等;
丁:运气好的时候,只要在转动前默默想好让指针停在6号扇形,指针停在6号扇形的可能性就会加大。

其中,你认为正确的见解有( )
A. 1个 B. 2个 C. 3个 D. 4个
-
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系中,O为坐标原点,已知A(1,1),在x轴上确定点P,使△AOP为等腰三角形,则符合条件的点P的个数为_________.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知直线
,(1)如图1,点
在直线
上的左侧,直接写出
,
和
之间的数量关系是 .(2)如图2,点
在直线
的左侧,
,
分别平分
,
,直接写出
和
的数量关系是 .(3)如图3,点
在直线
的右侧
,
仍平分
,
,那么
和
有怎样的数量关系?请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】若一次函数y=kx+b的自变量x的取值范围是-2≤x≤6,相应的函数值的范围是-11≤y≤9,求此函数的表达式.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AB⊥BC,AE平分∠BAD交BC于点E,AE⊥DE,∠1+∠2=90°,M、N分别是BA、CD延长线上的点,∠EAM和∠EDN的平分线交于点F,∠F的度数为( )

A.120°B.135°C.150°D.不能确定
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:一个正比例函数和一个一次函数的图象交于点P(-2、2)且一次函数的图象与y轴的交点Q的纵坐标为4.
(1)求这两个函数的解析式;
(2)在同一直角坐标系中画出这两个函数的图象;
(3)求△PQO的面积.

相关试题