【题目】如图(1)所示,∠AOB、∠COD都是直角.
(1)试判断∠AOC与∠BOD的大小关系,并说明理由;
(2)若∠BOC=60°,求∠AOD的度数;
(3)猜想∠AOD与∠BOC在数量上是相等,互余,还是互补的关系,并说明理由;
(4)当∠COD绕着点O旋转到图(2)所示位置时,你在(3)中的猜想还成立吗?请用你所学的知识加以说明.
![]()
参考答案:
【答案】(1)
,理由详见解析;(2)120°;(3)
,理由详见解析;(4)
成立,理由详见解析.
【解析】
(1)根据角的和差可以求得∠AOC、∠BOD的大小关系.
(2)根据角的和差求出∠AOC和∠AOD的度数即可;
(3)根据直角的定义可得∠AOB=∠COD=90°,然后用∠AOD和∠COB表示出∠BOD,列出方程整理即可得解;
(4)根据周角等于360°列式整理即可得解.
(1)如图①,相等,理由如下:
∵∠AOB、∠COD都是直角,∴∠AOB=∠COD=90°,∴∠AOB﹣∠BOC=∠COD﹣∠BOC,即∠AOC=∠BOD;
(2)∵∠BOC=60°,∠AOB=90°,∴∠AOC=∠AOB-∠BOC =90°-60°=30°.
∵∠COD=90°,∴∠AOD=∠COD+∠AOC= 90°+30°=120°.
(3)∠AOD与∠COB互补.理由如下:
∵∠AOB、∠COD都是直角,∴∠AOB=∠COD=90°,∴∠BOD=∠AOD﹣∠AOB=∠AOD﹣90°,∠BOD=∠COD﹣∠COB=90°﹣∠COB,∴∠AOD﹣90°=90°﹣∠COB,∴∠AOD+∠COB=180°,∴∠AOD与∠COB互补;
(4)成立.理由如下:
∵∠AOB、∠COD都是直角,∴∠AOB=∠COD=90°.
∵∠AOB+∠BOC+∠COD+∠AOD=360°,∴∠AOD+∠COB=180°,∴∠AOD与∠COB互补.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,CD为⊙O的直径,弦AB交CD于点E,连接BD、OB.

(1)求证:△AEC∽△DEB;
(2)若CD⊥AB,AB=8,DE=2,求⊙O的半径. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,某地方政府决定在相距50km的A、B两站之间的公路旁E点,修建一个土特产加工基地,且使C、D两村到E点的距离相等,已知DA⊥AB于A,CB⊥AB于B,DA=30km,CB=20km,那么基地E应建在离A站多少千米的地方?

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知在直角坐标系中,
的顶点都在网络格上:(1)请写出点
的坐标;(2)先画出
先向
轴正方向平移
个单位长度,得到
;请写出点
的坐标.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC 中,点 D,E 分别在边 AC,AB 上,BD 与 CE 交于点 O,给出下列三个条件:①∠EBO=∠DCO;②BE=CD;③OB=OC.
(1)上述三个条件中,由哪两个条件可以判定△ABC 是等腰三角形?(用序号写出所有成立的情形)
(2)请选择(1)中的一种情形,写出证明过程.

-
科目: 来源: 题型:
查看答案和解析>>【题目】运算能力是一项重要的数学能力.兵老师为帮助学生诊断和改进运算中的问题,对全班学生进行了三次运算测试(每次测验满分均为100分).小明和小军同学帮助兵老师统计了某数学小组5位同学(A,B,C,D,E,F)的三次测试成绩,小明在下面两个平面直角坐标系里描述5位同学的相关成绩.小军仔细核对所有数据后发现,图1中所有同学的成绩坐标数据完全正确,而图2中只有一个同学的成绩纵坐标数据有误.以下说法中:①A同学第一次成绩50分,第二次成绩40分,第三次成绩60分;②B同学第二次成绩比第三次成绩高;③D同学在图2中的纵坐标是有误的;④E同学每次测验成绩都在95分以上.其中合理的是( )

A.①②③B.①②④C.①③④D.②③④
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,以AB为直径的⊙O经过点P,C是⊙O上一点,连接PC交AB于点E,且∠ACP=60°,PA=PD.

(1)试判断PD与⊙O的位置关系,并说明理由;
(2)若
:
=1:2,求AE:EB:BD的值(请你直接写出结果);
(3)若点C是弧AB的中点,已知AB=4,求CE
CP的值.
相关试题