【题目】如图,在△ABC中,AB=AC,∠B=30°,O是BC上一点,以点O为圆心,OB长为半径作圆,恰好经过点A,并与BC交于点D. ![]()
(1)判断直线CA与⊙O的位置关系,并说明理由;
(2)若AB=
,求图中阴影部分的面积(结果保留π).
参考答案:
【答案】
(1)解:连接OA,
∵AB=AC,
∴∠C=∠B,
∵∠B=30°,
∴∠C=30°,
∴∠AOC=60°,
∴∠OAC=90°,
∴直线CA与⊙O相切;
(2)解:连接AD,过点D作DE⊥AC,过点O作OF⊥AB,
![]()
∵AB=
,
∴AD=OA=OB=OD=4,
∵∠DAE=30°,
∴DE=2,
∴△ABC面积12
,
扇形AOD面积
,
△ABO面积4
,
∴阴影面积
﹣
.
【解析】(1)连接OA,由AB=AC,则∠C=∠B=30°,∠AOC=60°,从而得出∠OAC=90°,则直线CA与⊙O相切;(2)连接AD,过点D作DE⊥AC,过点O作OF⊥AB,可求得AD和DE,即可得出△ABC的面积,再减去扇形AOD和△AOB的面积即可.
【考点精析】利用切线的判定定理和扇形面积计算公式对题目进行判断即可得到答案,需要熟知切线的判定方法:经过半径外端并且垂直于这条半径的直线是圆的切线;在圆上,由两条半径和一段弧围成的图形叫做扇形;扇形面积S=π(R2-r2).
-
科目: 来源: 题型:
查看答案和解析>>【题目】解方程与不等式组
(1)解方程:
;
(2)解不等式组:
. -
科目: 来源: 题型:
查看答案和解析>>【题目】一不透明的袋子中装有4个球,它们除了上面分别标有的号码1、2、3、4不同外,其余均相同.将小球搅匀,并从袋中任意取出一球后放回;再将小球搅匀,并从袋中再任意取出一球.若把两次号码之和作为一个两位数的十位上的数字,两次号码之差的绝对值作为这个两位数的个位上的数字,请用“画树状图”或“列表”的方法求所组成的两位数是奇数的概率.
-
科目: 来源: 题型:
查看答案和解析>>【题目】初三年级教师对试卷讲评课中学生参与的深度与广度进行评价调查,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名初中学生的参与情况,绘制成如图所示的频数分布直方图和扇形统计图(均不完整),请根据图中所给信息解答下列问题:

(1)在这次评价中,一共抽查了名学生;
(2)在扇形统计图中,项目“主动质疑”所在的扇形的圆心角的度数为度;
(3)请将频数分布直方图补充完整;
(4)如果全市有6000名初三学生,那么在试卷评讲课中,“独立思考”的初三学生约有多少人? -
科目: 来源: 题型:
查看答案和解析>>【题目】在一条直线上依次有A、B、C三个海岛,某海巡船从A岛出发沿直线匀速经B 岛驶向C岛,执行海巡任务,最终达到C岛.设该海巡船行驶x(h)后,与B港的距离为y(km),y与x的函数关系如图所示.

(1)填空:A、C两港口间的距离为km,a=;
(2)求y与x的函数关系式,并请解释图中点P的坐标所表示的实际意义;
(3)在B岛有一不间断发射信号的信号发射台,发射的信号覆盖半径为15km,求该海巡船能接受到该信号的时间有多长? -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在矩形ABCD中,AB=3,BC=4.动点P从点A出发沿AC向终点C运动,同时动点Q从点B出发沿BA向点A运动,到达A点后立刻以原来的速度沿AB返回.点P,Q运动速度均为每秒1个单位长度,当点P到达点C时停止运动,点Q也同时停止.连结PQ,设运动时间为t(t>0)秒.

(1)在点Q从B到A的运动过程中,
①当t=时,PQ⊥AC;
(2)②求△APQ的面积S关于t的函数关系式,并写出t的取值范围;
(3)伴随着P、Q两点的运动,线段PQ的垂直平分线为l.
①当l经过点A时,射线QP交AD于点E,求AE的长;
②当l经过点B时,求t的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,已知点A(a,0),B(0,b),且a、b满足
,ABCD的边AD与y轴交于点E,且E为AD中点,双曲线
经过C、D两点.
(1)求k的值;
(2)点P在双曲线
上,点Q在y轴上,若以点A、B、P、Q为顶点的四边形是平行四边形,试求满足要求的所有点P、Q的坐标;
(3)以线段AB为对角线作正方形AFBH(如图3),点T是边AF上一动点,M是HT的中点,MN⊥HT,交AB于N,当T在AF上运动时,
的值是否发生改变?若改变,求出其变化范围;若不改变,请求出其值,并给出你的证明.
相关试题