【题目】在一条直线上依次有A、B、C三个海岛,某海巡船从A岛出发沿直线匀速经B 岛驶向C岛,执行海巡任务,最终达到C岛.设该海巡船行驶x(h)后,与B港的距离为y(km),y与x的函数关系如图所示. ![]()
(1)填空:A、C两港口间的距离为km,a=;
(2)求y与x的函数关系式,并请解释图中点P的坐标所表示的实际意义;
(3)在B岛有一不间断发射信号的信号发射台,发射的信号覆盖半径为15km,求该海巡船能接受到该信号的时间有多长?
参考答案:
【答案】
(1)85;1.7h
(2)解:当0<x≤0.5时,设y与x的函数关系式为:y=kx+b,
∵函数图像经过点(0,25),(0.5,0),
∴
,
解得
.
所以,y=﹣50x+25;
当0.5<x≤1.7时,设y与x的函数关系式为:y=mx+n,
∵函数图像经过点(0.5,0),(1.7,60),
∴
,
解得
.
所以,y=50x﹣25;
(3)解:由﹣50x+25=15,
解得x=0.2,
由50x﹣25=15,
解得x=0.8.
所以,该海巡船能接受到该信号的时间为:0.6h
【解析】解:(1)由图可知,A、B港口间的距离为25,B、C港口间的距离为60, 所以,A、C港口间的距离为:25+60=85km,
海巡船的速度为:25÷0.5=50km/h,
∴a=85÷50=1.7h.
所以答案是:85,1.7h;
-
科目: 来源: 题型:
查看答案和解析>>【题目】一不透明的袋子中装有4个球,它们除了上面分别标有的号码1、2、3、4不同外,其余均相同.将小球搅匀,并从袋中任意取出一球后放回;再将小球搅匀,并从袋中再任意取出一球.若把两次号码之和作为一个两位数的十位上的数字,两次号码之差的绝对值作为这个两位数的个位上的数字,请用“画树状图”或“列表”的方法求所组成的两位数是奇数的概率.
-
科目: 来源: 题型:
查看答案和解析>>【题目】初三年级教师对试卷讲评课中学生参与的深度与广度进行评价调查,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名初中学生的参与情况,绘制成如图所示的频数分布直方图和扇形统计图(均不完整),请根据图中所给信息解答下列问题:

(1)在这次评价中,一共抽查了名学生;
(2)在扇形统计图中,项目“主动质疑”所在的扇形的圆心角的度数为度;
(3)请将频数分布直方图补充完整;
(4)如果全市有6000名初三学生,那么在试卷评讲课中,“独立思考”的初三学生约有多少人? -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,AB=AC,∠B=30°,O是BC上一点,以点O为圆心,OB长为半径作圆,恰好经过点A,并与BC交于点D.

(1)判断直线CA与⊙O的位置关系,并说明理由;
(2)若AB=
,求图中阴影部分的面积(结果保留π). -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在矩形ABCD中,AB=3,BC=4.动点P从点A出发沿AC向终点C运动,同时动点Q从点B出发沿BA向点A运动,到达A点后立刻以原来的速度沿AB返回.点P,Q运动速度均为每秒1个单位长度,当点P到达点C时停止运动,点Q也同时停止.连结PQ,设运动时间为t(t>0)秒.

(1)在点Q从B到A的运动过程中,
①当t=时,PQ⊥AC;
(2)②求△APQ的面积S关于t的函数关系式,并写出t的取值范围;
(3)伴随着P、Q两点的运动,线段PQ的垂直平分线为l.
①当l经过点A时,射线QP交AD于点E,求AE的长;
②当l经过点B时,求t的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,已知点A(a,0),B(0,b),且a、b满足
,ABCD的边AD与y轴交于点E,且E为AD中点,双曲线
经过C、D两点.
(1)求k的值;
(2)点P在双曲线
上,点Q在y轴上,若以点A、B、P、Q为顶点的四边形是平行四边形,试求满足要求的所有点P、Q的坐标;
(3)以线段AB为对角线作正方形AFBH(如图3),点T是边AF上一动点,M是HT的中点,MN⊥HT,交AB于N,当T在AF上运动时,
的值是否发生改变?若改变,求出其变化范围;若不改变,请求出其值,并给出你的证明.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,点A(a,b)为第一象限内一点,且a<b.连结OA,并以点A为旋转中心把OA逆时针转90°后得线段BA.若点A、B恰好都在同一反比例函数的图象上,则
的值等于 . 
相关试题