【题目】如图,AD、BE分别是△ABC的中线,AD、BE相交于点F. ![]()
(1)△ABC与△ABD的面积有怎样的数量关系?为什么?
(2)△BDF与△AEF的面积有怎样的数量关系?为什么?
参考答案:
【答案】
(1)解:△ABC的面积是△ABD的面积的2倍.
理由:∵AD是△ABC的中线,
∴BD=CD,
又∵点A为△ABC的顶点,△ACD与△ABD同底等高,
∴△ACD的面积=△ABD的面积,
∴△ABC的面积是△ABD的面积的2倍
![]()
(2)解:△BDF与△AEF的面积相等.
理由:∵BE是△ABC的中线,
∴△ABC的面积是△ABE的面积的2倍,
又∵△ABC的面积是△ABD的面积的2倍,
∴△ABE的面积=△ABD的面积,
即△BDF的面积+△ABF的面积=△AEF的面积+△ABF的面积,
∴△BDF与△AEF的面积相等.
【解析】(1)根据三角形的中线将三角形分成面积相等的两部分进行判断;(2)根据三角形的中线将三角形分成面积相等的两部分,得出△ABE的面积=△ABD的面积,再根据△BDF的面积+△ABF的面积=△AEF的面积+△ABF的面积,得出结论即可.
【考点精析】本题主要考查了三角形的“三线”和三角形的面积的相关知识点,需要掌握1、三角形角平分线的三条角平分线交于一点(交点在三角形内部,是三角形内切圆的圆心,称为内心);2、三角形中线的三条中线线交于一点(交点在三角形内部,是三角形的几何中心,称为中心);3、三角形的高线是顶点到对边的距离;注意:三角形的中线和角平分线都在三角形内;三角形的面积=1/2×底×高才能正确解答此题.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知(x+3)2与|y﹣2|互为相反数,z是绝对值最小的有理数,求(x+y)y+xyz的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】2018年合肥市共有30293名考生参加中考,为了了解这30293名考生的数学成绩,从中抽取了1000名生的数学成绩进行统计分析,以下说法中,错误的是( )
A. 这种调查采用了抽样调查的方式
B. 30293名考生是总体
C. 从中抽取的1000名学生的数学成绩是总体的一个样本
D. 样本容量是1000
-
科目: 来源: 题型:
查看答案和解析>>【题目】小刚走路时发现自己的影子越走越长,这是因为( )
A. 从路灯下走开,离路灯越来越远B. 走到路灯下,离路灯越来越近
C. 人与路灯的距离与影子长短无关D. 路灯的灯光越来越亮
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,四边形OABC是一张放在平面直角坐标系中的矩形纸片,点A在x轴上,点C在y轴上,且线段OA、OC(OA>OC)是方程x2﹣18x+80=0的两根,将边BC折叠,使点B落在边OA上的点D处.

(1)求线段OA、OC的长;
(2)求直线CE与x轴交点P的坐标及折痕CE的长;
(3)是否存在过点D的直线l,使直线CE与x轴所围成的三角形和直线l、直线CE与y轴所围成的三角形相似?如果存在,请直接写出其解析式并画出相应的直线;如果不存在,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AE∥BF,AC平分∠BAD,交BF于点C,BD平分∠ABC,交AE于点D,连接CD.

(1)若AB=1,则BC的长=;
(2)求证:四边形ABCD是菱形. -
科目: 来源: 题型:
查看答案和解析>>【题目】下列从左到右边的变形,是因式分解的是( )
A、(3﹣x)(3+x)=9﹣x2
B、(y+1)(y﹣3)=﹣(3﹣y)(y+1)
C、4yz﹣2y2z+z=2y(2z﹣yz)+z
D、﹣8x2+8x﹣2=﹣2(2x﹣1)2
相关试题