【题目】二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的对称轴是直线x=1,其图象的一部分如图所示,对于下列说法:①abc<0;②a﹣b+c<0;③3a+c<0;④当﹣1<x<3时,y>0.其中正确的是______(把正确说法的序号都填上)
![]()
参考答案:
【答案】①②③.
【解析】∵抛物线的开口向下,∴a<0.
∴-
>0,∴
<0,
∴b>0,令x=0,则y=c>0,
∴abc<0,所以①正确;
∵对称轴为x=1,图象与x轴的一个交点位于2、3之间,∴图象与x轴的另一交点位于0、-1之间,∴当x=-1时,a-b+c<0,所以②正确;
∵-
=1,∴b=-2a.
∴y=ax2+bx+c=ax2-2ax+c,
当x=-1时,y=a+2a+c=3a+c,
根据图象得3a+c<0,所以③正确;
∵根据图象可得当-1<x<3时,y>0错误,所以④错误.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某学习小组在探究三角形全等时,发现了下面这种典型的基本图形:
如图1,已知:在
中,
,
,直线m经过点A,
直线m,
直线m,垂足分别为点D、
试猜想DE、BD、CE有怎样的数量关系,请直接写出;
组员小颖想,如果三个角不是直角,那结论是否会成立呢?如图2,将
中的条件改为:在
中,
,D、A、E三点都在直线m上,并且有
其中
为任意锐角或钝角
如果成立,请你给出证明;若不成立,请说明理由.
数学老师赞赏了他们的探索精神,并鼓励他们运用这个知识来解决问题:如图3,F是
角平分线上的一点,且
和
均为等边三角形,D、E分别是直线m上A点左右两侧的动点
、E、A互不重合
,在运动过程中线段DE的长度始终为n,连接BD、CE,若
,试判断
的形状,并说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】完成下面的证明过程:
已知:如图,∠D=110°,∠EFD=70°,∠1=∠2,
求证:∠3=∠B

证明:∵∠D=110°, ∠EFD=70°(已知)
∴∠D+∠EFD=180°
∴AD∥______( )
又∵∠1=∠2(已知)
∴_____∥BC ( 内错角相等,两直线平行)
∴EF∥_____ ( )
∴∠3=∠B(两直线平行,同位角相等)
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点O为正方形ABCD的中心,BE平分∠DBC交DC于点E,延长BC到点F,使FC=EC,连结DF交BE的延长线于点H,连结OH交DC于点G,连结HC.则以下四个结论中:①OH∥BF,②GH=
BC,③BF=2OD,④∠CHF=45°.正确结论的个数为( )
A.4个B.3个C.2个D.1个
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AB是⊙O的直径,AD是⊙O的切线,点C在⊙O上,BC∥OD.
(1)若AB=2,OD=3,求BC的长;
(2)若作直线CD,试说明直线CD是⊙O的切线.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC在直角坐标系中,
(1)请写出△ABC各点的坐标.
(2)求出△ABC的面积.
(3)若把△ABC向上平移2个单位,再向右平移2个单位得△A′B′C′,在图中画出△ABC变化位置。

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知平行四边形ABCO,以点O为原点,OC所在的直线为x轴,建立直角坐标系,AB交y轴于点D,AD=4,OC=10,∠A=60°,线段EF垂直平分OD,点P为线段EF上的动点,PM⊥x轴于点M点,点E与E'关于x轴对称,连接BP、E'M,则BP+PM+ME'的长度的最小值为______.

相关试题